Simon Gottschalk

PhD Student at L3S Research Center, Leibniz University Hannover

The ALEXANDRIA project (ERC Nr. 339233) aims to develop models, tools and techniques necessary to explore and analyze Web archives in a meaningful way. ALEXANDRIA will significantly advance semantic and time-based indexing for Web archives using human-compiled knowledge available on the Web, to efficiently index, retrieve and explore information about entities and events from the past. The ALEXANDRIA Testbed will provide relevant collections and algorithms that enable further research on and practical application of research results to existing archives.
Die zunehmende Digitalisierung in vielen Anwendungsbereichen der Wirtschaft, Verwaltung und Wissenschaft führt zu ständig wachsenden Datenmengen und damit immer häufiger zur Notwendigkeit, datenbasierte Prognosen zu erstellen und Zusammenhänge in großen heterogenen Datenmengen zu erkennen. Machine Learning (ML) ist ein Kernthema in diesem Bereich, mit dem sich 64% aller deutschen Unternehmen aktiv beschäftigen. Die effiziente Anwendung aktueller ML-Verfahren erfordert jedoch ein sehr hohes Maß an Expertenwissen, was einer verbreiteten Nutzung von Machine Learning-Ansätzen, insbesondere durch kleine und mittlere Unternehmen (KMU), im Wege steht.
Die zentrale Forschungsfrage des Simple-ML-Projekts lautet daher: Wie kann die Benutzbarkeit von ML-Verfahren signifikant verbessert werden um diese für einen breiteren Anwenderkreis leichter zugänglich zu machen?