The increasing complexity of current computer vision algorithms for autonomous driving, such as object detection and classification using neural networks, represents a challenge for automotive system designers. Fulfilling real-time processing requirements and constraints in energy consumption is hard even for current processing platforms. The goal of this project is to design a new approach of application-specific vector processor for FPGA implementation. The well-known overhead of other platforms (e.g. GPUs) shall be avoided by using several strategies: Novel functional mechanisms, a modular and customizable architecture and a suitable development framework, which is especially designed for the implementation of automotive applications.). An FPGA-based prototype will demonstrate the performance of the vector processor concept for a selected application at the end of the project.

Project duration:
May 2016 - October 2017

Bibsonomy show project publications:
1

Bibsonomy use tabs to list publications:
1

Members:
vaya

Project manager:
Jun.-Prof. Dr.-Ing. Guillermo Payá Vayá

Project type:
ZIM ZF4218301BZ6

URL:
https://www.ims.uni-hannover.de/research_reconfigurable_architect.html?&L=1

Research Area:
Cyber Physical Systems

Status of the Project: