
Rule-Based Policy Representations and

Reasoning

Piero Andrea Bonatti1, Juri Luca De Coi2, Daniel Olmedilla2,3,
and Luigi Sauro1

1 Università di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy
{bonatti,sauro}@na.infn.it

2 Forschungszentrum L3S, Appelstr. 9a, 30167 Hannover, Germany
{decoi,olmedilla}@L3S.de

3 Telefónica Research & Development, C/ Emilio Vargas 6, 28043 Madrid, Spain
danieloc@tid.es

Abstract. Trust and policies are going to play a crucial role in en-
abling the potential of many web applications. Policies are a well-known
approach to protecting security and privacy of users in the context of
the Semantic Web: in the last years a number of policy languages were
proposed to address different application scenarios.

The first part of this chapter provides a broad overview of the research
field by accounting for twelve relevant policy languages and comparing
them on the strength of ten criteria which should be taken into account
in designing every policy language. By comparing the choices designers
made in addressing such criteria, useful conclusions can be drawn about
strong points and weaknesses of each policy language.

The second part of this chapter is devoted to the description of the
Protune framework, a system for specifying and cooperatively enforcing
security and privacy policies on the Semantic Web developed within the
network of excellence REWERSE. We describe the framework’s func-
tionalities, provide details about their implementation, and report the
results of performance evaluation experiments.

1 Introduction

Trust is the top layer of the famous Semantic Web picture. It plays a crucial role
in enabling the potential of the web. While security and privacy do not cover all
the facets of trust, still they play a central role in raising the level of trust in
web resources.

Security management is a foremost issue in large scale networks like the Se-
mantic Web. In such a scenario, traditional assumptions for establishing and
enforcing access control regulations do not hold anymore. In particular identity-
based access control mechanisms have proved to be ineffective, since in decen-
tralized and multicentric environments, the requester and the service provider
are often unknown to each other.

F. Bry and J. Maluszynski (Eds.): Semantic Techniques for the Web, LNCS 5500, pp. 201–232, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

202 P.A. Bonatti et al.

Web Services obviously need some form of access control. Moreover, recent ex-
periences with Facebook’s “beacon” service1 and Virgin’s use of Flickr pictures2

have shown that users are not willing to accept every possible use (or abuse) of
their data.

Policies are a well-known approach to protecting security and privacy of users
in the context of the Semantic Web: policies specify who is allowed to perform
which action on which object depending on properties of the requester and of
the object as well as parameters of the action and environmental factors (e.g.,
time). The application of suitable policies for protecting services and sensitive
data may determine success or failure of a new service. In a near future, we
might see Web Services compete with each other by improving and properly
advertising their policies.

2 A Review of the State-of-the-Art in Policy Languages

The potential policies have proved to own is not fully exploited yet, since nowa-
days their usage is mainly restricted to specific application areas. On the one
hand this depends on general lack of infrastructure services for such policies to
truly function: for instance, there are no end user-oriented digital certification
services (national digital ID providers are just appearing). On the other hand,
lacking knowledge about currently available solutions is one of the main fac-
tors hindering widespread use of policies: in order to exploit a policy language
the potential user needs to be provided with a clear picture of the advantages
it provides in comparison with other solutions. Furthermore in the last years
many policy languages were proposed, targeting different application scenarios
and provided with different features and expressiveness: scope and properties of
available languages have to be known to the user in order to help her in choosing
the one most suitable to her needs.

In an attempt to help with these and other problems, comparisons among
policy languages have been provided in the literature. However existing com-
parisons either do not consider a relevant number of available solutions or are
mainly focused on the application scenarios the authors worked with (e.g., trust
negotiation in [20] or ontology-based systems in [22]) Moreover policy-based se-
curity management is a rapidly evolving field and most of this comparison work
is now out-of-date.

In this section we provide an extensive comparison covering twelve policy lan-
guages. Such a comparison will be carried out on the strength of ten criteria. Our
analysis will hopefully have the side-effect of helping users in choosing the policy
language mostly suiting their needs, as well as researchers currently investigating
this area.

1 http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/

AR2007112902503.html?hpid=topnews
2 http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-

photo/2007/09/21/1189881735928.html

http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/AR2007112902503.html?hpid=topnews
http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/AR2007112902503.html?hpid=topnews
http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-photo/2007/09/21/1189881735928.html
http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-photo/2007/09/21/1189881735928.html

Rule-Based Policy Representations and Reasoning 203

This section is organized as follows. In section 2.1 related work is accounted
for. Section 2.2 briefly sketches the evolution of the research field and introduces
some concepts (e.g., role-based policy language as well as various kinds of poli-
cies) which will be massively exploited in the following. Sections 2.3 and 2.4
respectively introduce the languages which will be compared later on and the
criteria according to which the comparison will be carried out. The actual com-
parison takes place in section 2.5, whereas section 2.6 presents overall results
and draws some conclusions.

2.1 Related Work

The paper of Seamons et al. [20] is the basis of our comparison: some of the
insights they suggested have proved to be still valuable right now and as such
they are addressed in our work as well. Nevertheless in over six years the research
field has considerably changed and nowadays many aspects of [20] are out of date:
new languages have been developed and new design paradigms have been taken
into account, what makes the comparison performed in [20] obsolete and many
criteria according to which they were evaluated not suitable anymore.

The pioneer paper of Seamons et al. paved the way to future research on policy
language comparisons like Tonti et al. [22], Anderson [2] and Duma et al. [14]:
although [22] actually presents a comparison of two ontology-based languages
(namely KAoS and Rei) with the object-oriented language Ponder, the work
is rather an argument for ontology-based systems, since it clearly shows the
advantages of ontologies.

Because of the impressive amount of details it provides, [2] restricts the com-
parison to only two (privacy) policy languages, namely EPAL and XACML,
therefore a comprehensive overview of the research field is not provided, and
features which neither EPAL nor XACML support are not taken into account
at all among the comparison criteria.

Finally [14] provides a comparison specifically targeted to giving insights and
suggestions to policy writers (designers): therefore the criteria, according to
which the comparison is carried out, are mainly practical ones and scenario-
oriented, whereas more abstract issues are considered out of scope and hence
not addressed.

2.2 Background

In this section some concepts are introduced, which will help to smoothly un-
derstand the rest of the chapter. First an overall picture of the research field is
provided by briefly outlining the historical evolution of policy languages, then
the definitions of some policy types which will be used throughout the chapter
are provided.

From uid/psw-based authentication to trust negotiation. Traditional
access control mechanisms (like the ones exploited in traditional operating sys-
tems) make authorization decisions based on the identity of the requester: the
user must provide a pair (username, password) and, if this pair matches with

204 P.A. Bonatti et al.

one of the entry in some static table kept by the system (e.g., the file /etc/pwd
in Unix) the user is granted with some privileges. However, in decentralized or
multicentric environments, peers are often unknown to each other, and access
control based on identities may be ineffective. In order to address this scenario,
role-based access control mechanisms were developed. In a role-based access con-
trol system a user is assigned with one or more roles, which are in turn exploited
in order to take authorization decisions. Since the number of roles is typically
much smaller than the number of users, role-based access control systems reduce
the number of access control decisions. A thorough description of role-based ac-
cess control can be found in [16].

In a role-based access control system the authorization process is split into
two steps, namely assignment of one or more roles and check whether a member
of the assigned role(s) is allowed to perform the requested action. The role-
based languages we consider provide support only to one of the two steps: for
instance, TPL (a role-assignment policy language) policies describe to which role
the requester can be mapped; this role must then be fed as input to an existing
role-based access control mechanism. A similar approach is taken by Cassandra
and RT . On the other hand Ponder (authorization) policies are meant to support
the second step, i.e., they allow to define which actions may be performed by a
requester who has already been successfully authenticated.

Role-based authentication mechanisms require that the requester provides
some information in order to map her to some role(s). In the easiest case this
information can be once again a (uid, pwd) pair, but systems which need a
stronger authentication usually exploit credentials, i.e., digital certificates rep-
resenting statements certified by given entities (certification authorities) which
can be used in establishing properties of their holder. More modern approaches
(e.g., EPAL, WSPL and XACML) directly exploit the properties of the requester
in order to make an authorization decision, i.e., they do not split the authoriza-
tion process in two parts like role-based languages. Nevertheless they do not use
credentials in order to certificate the properties of the requester.

Credentials, as well as declarations (i.e., not signed statements about prop-
erties of the holder) are however supported by PeerTrust, Protune and PSPL,
which are languages designed to support the trust negotiation [24] vision. The
notion of trust management was introduced by [7] as a new paradigm bringing
together authentication and authorization in distributed systems. A scenario-
based introduction to Trust Negotiation is provided in Section 3.2.

Policy types. Policies can be exploited in a number of fields and with dif-
ferent goals: security, management, conversation, quality-of-service, quality-of-
protection, reliable messaging, reputation-based, provisional policies are just
some examples of policies which are encountered in the literature. Here we focus
on policy types which will be mentioned in the following, for instance because
some language we consider has been explicitly designed to support that kind of
policy.

Role-assignment policies. As the name suggests, role-assignment policies specify
which conditions a requester must fulfill in order to belong to some server-defined

Rule-Based Policy Representations and Reasoning 205

role. Role-assignment policies are typically used in role-based policy languages
like Cassandra, RT and TPL which postulate the existence of a back-end role-
based access control mechanism to which the role will be fed in order to perform
the actual authorization.

Access control policies. Access control is concerned with limiting the activities
a user is allowed to perform. Consequently access control policies define the
prerequisites the requester must fulfill in order to have the activity she asked for
performed.

Privacy policies. Privacy policies are meant to protect the privacy of the user:
they need to reflect current regulations and possibly promises made to the cus-
tomers. Privacy policies arise further issues in comparison to access control poli-
cies, as they require a more sophisticated treatment of deny rules and conditions
on context information; moreover privacy policy languages have to take into ac-
count the notion of “purpose”, which is essential to privacy legislation. A subset
of privacy policies are enterprise privacy policies which furthermore have to pro-
vide support to more restrictive enterprise-internal practices and may need to
handle customer preferences. EPAL was especially designed in order to target
enterprise privacy policies.

Obligation policies. Obligation policies specify the actions that must be per-
formed when certain events occur, i.e., they are event-triggered condition-action
rules. Obligation policies may be exploited, e.g., to specify which actions must be
performed when security violations occur or under which circumstances auditing
and logging activities have to be carried out. Obligation policies are supported,
among others, by KAoS, Ponder and Rei.

2.3 Presentation of the Considered Policy Languages

To date a bunch of policy languages have been developed and are currently
available: we have chosen those which at present seem to be the most popu-
lar ones, namely Cassandra [6], EPAL [3], [4], KAoS [23], PeerTrust [15], Pon-
der [13], Protune [8], [10], PSPL [9], Rei [17], RT [18], TPL [16], WSPL [1] and
XACML [19], [21]. The information we will provide about the aforementioned
languages is based on the referenced documents. Whenever a feature we are go-
ing to tackle is not addressed in the considered literature nor is it known to the
authors in other way, the feature is supposed not to be provided by the language.

Thenumber andvariety of policy languages proposed so far is justifiedby the dif-
ferent requirements they had to accomplish and the different use cases theywerede-
signed to support. Ponder was meant to help local security policy specification and
security management activities, therefore typical addressed application scenarios
include registration of users or logging and audit events, whereas firewalls, oper-
ating systems and databases belong to the applications targeted by the language.
WSPL’s name itself (namely Web Services Policy Language) suggests its goal: sup-
porting description and control of various aspects and features of a Web Service.
Web Services are addressed by KAoS too, as well as general-purpose grid com-
puting, although it was originally oriented to software agent applications (where

206 P.A. Bonatti et al.

dynamic runtime policy changes need to be supported). Rei’s design was primar-
ily concerned with support to pervasive computing applications (i.e. those in which
people and devices are mobile and use wireless networking technologies to discover
and access services and devices). EPAL (Enterprise Privacy Authorization Lan-
guage) was proposed by IBM in order to support enterprise privacy policies. Some
years before IBM had already introduced the pioneer role-based policy language
TPL (Trust Policy Language), which paved the way to other role-assignment pol-
icy languages like Cassandra and RT (Role-based Trust-management framework),
both of which aimed to address access control and authorization problems which
arise in large-scale decentralized systems when independent organizations enter
into coalitions whose membership and very existence change rapidly. The main
goal of PSPL (Portfolio and Service Protection Language) was providing a uni-
form formal framework for regulating service access and information disclosure in
an open, distributed network system like the web; support to negotiations and pri-
vate policies were among the basic reasonswhich led to its definition. PeerTrust is a
simple yet powerful language for trust negotiation on the Semantic Web based on a
distributed query evaluation. Trust negotiation is addressed by Protune too, which
supports a broad notion of “policy” and does not require shared knowledge besides
evidences and a common vocabulary. Finally XACML (eXtensible Access Control
Markup Language)was meant to be a standard general purpose access control pol-
icy language, ideally suitable to the needs of most authorization systems.

Given the multiplicity of available languages and the sometimes very specific
contexts they fit into, one may argue that a meaningful comparison among them
is impossible or, at least, meaningless. We claim that such a comparison is not
only possible but even worth: to this aim we identified ten criteria which should
be taken into account in designing every policy language. By comparing the
choices designers made in addressing such criteria, useful conclusions can be
drawn about strong points and weaknesses of each policy language.

2.4 Presentation of the Considered Criteria

We acknowledge the remark made by [14], according to which a comparison
among policy languages on the basis of the criteria presented in [20] is only
partially satisfactory for a designer, since general features do not help in under-
standing which kind of policies can be practically expressed with the constructs
available in a language. Therefore in our comparison we selected a good deal of
criteria having a concrete relevance (e.g., whether actions can be defined within
a policy and executed during its evaluation, how the result of a request looks
like, whether the language provides extensibility mechanisms and to which ex-
tent . . .). On the other hand, since we did not want to come short on theoretical
issues, we selected four additional criteria, basically taken from [20] and somehow
reworked and updated them. We called these more theoretical criteria core policy
properties whereas more practical issues have been grouped under the common
label contextual properties. In the following presentation core policy properties
precede contextual properties.

Rule-Based Policy Representations and Reasoning 207

Well-defined semantics. According to [20] we consider a policy language’s se-
mantics to be well-defined if the meaning of a policy written in that language is
independent of the particular implementation of the language. Logic programs
and Description logic knowledge bases have a mathematically defined semantics,
therefore we assume policy languages based on either of the two formalisms to
have well-defined semantics.

Monotonicity. In the sense of logic, a system is monotonic if the set of conclu-
sions which can be drawn from the current knowledge base does not decrease
by adding new information to the knowledge base. In the sense of [20] a pol-
icy language is considered to be monotonic if an accomplished request would
also be accomplished if accompanied by additional disclosure of information by
the peers: in other words, disclosure of additional evidences and policies should
only result in the granting of additional privileges. Policy languages may be not
monotonic in the sense of logic (as it happens with Logic programming-based
languages) but still be monotonic in the sense of [20], like Protune.

Condition expressiveness. A policy language must allow to specify under which
conditions the request of the user (e.g., for performing an action or for disclosing
a credential) should be accomplished. Policy languages differ in the expressive-
ness of such conditions: some languages allow to set constraints on properties
of the requester, but not on parameters of the requested action, moreover con-
straints on environmental factors (e.g., time) are not always supported. This
criterion subsumes “credential combinations”, “constraints on attribute values”
and “inter-credential constraints” in [20].

Underlying formalism. A good deal of policy languages base on some well-known
formalism. Knowledge about the formalism a language bases upon can be use-
ful in order to understand some basic features of the language itself: e.g., the
fact that a language is based on Logic programming with negation (as failure)
entails consequences regarding the monotonicity of the language (in the sense
of logic), whereas knowing that Description logic knowledge bases may contain
contradictory statements could induce to infer that a Description logics-based
language needs a way to deal with such contradictions.

Action execution. During the evaluation of a policy some actions may have to
be performed: one may want to retrieve the current system time (e.g., in case
authorization should be allowed only in a specific time frame), to send a query
to a database or to record some information in a log file.

It is worth noticing that this criterion evaluates whether a language allows the
policy writer to specify actions within a policy: during the evaluation of a policy
the engine may carry out non-trivial actions on its own (e.g., both RT and TPL
engines provide automatic resolution of credential chains) but such actions are
not considered in our investigation.

Delegation. Delegation is often used in access control systems to cater for tem-
porary transfer of access rights to agents acting on behalf of other ones (e.g.,

208 P.A. Bonatti et al.

passing write rights to a printer spooler in order to print a file). The right of
delegating is a right as well and as such can be delegated, too. Some languages
provide a means for cascaded delegations up to a certain length, whereas others
allow unbounded delegation chains.

In order to support delegation many languages provide a specific built-in con-
struct, whereas others exploit more fine-grained features of the language in order
to simulate high-level constructs. The latter approach allows to support more
flexible delegation policies and is hence more suited for expressing the subtle but
significant semantic differences which appear in real-world applications.

Evidences. The result of a policy’s evaluation may depend on the identities or
other properties of the peer who requested for its evaluation: a means needs hence
to be provided in order for the peers to communicate such properties to each
other. Such information is usually sent in the form of digital certificates signed by
trusted entities (certification authorities) and called credentials. Credentials are
not supported, among else, by languages not targeting authentication policies.
PeerTrust, Protune and PSPL provide another kind of evidence, namely dec-
larations which are non-signed statements about properties of the holder (e.g.,
credit-card numbers).

Negotiation support. [1] adopts a broad notion of “negotiation”, namely a ne-
gotiation is supposed to happen between two peers whenever (i) both peers are
allowed to define a policy and (ii) both policies are taken into account when
processing a request. According to this definition, WSPL supports negotiations
as well. In this chapter we adopt a narrower definition of negotiation by adding
a third prerequisite stating that (iii) the evaluation of the request must be dis-
tributed, i.e., both peers must locally evaluate the request and either decide to
terminate the negotiation or send a partial result to the other peer who will go
on with the evaluation.

Whether the evaluation is local or distributed may be considered an imple-
mentation issue, as long as policies are freely disclosable. Distributed evaluation
is required under a conceptual point of view as soon as the need for keeping
policies private arises: indeed if policies were not private, simply merging the
peers’ policies would reveal possible compatibilities between them.

Policy engine decision. The result of the evaluation of a policy must be notified
to the requester. The result sent back by the policy engine may carry information
to different extents: in the easiest case a boolean answer may be sent (allowed vs.
denied). Some languages support error messages. Protune is the only language
providing enough informative content to let the user understand how the result
was computed (and thereby why the query succeeded/failed).

Extensibility. Since experience shows that each system needs to be updated
and extended with new features, a good programming practice requires to keep
things as general as possible in order to support future extensions. Almost every
language provides some support to extensibility: in the following we will provide a
description of the mechanisms languages adopt in order to support extensibility.

Rule-Based Policy Representations and Reasoning 209

2.5 Comparison

In this section the considered policy languages will be compared according to
the criteria outlined in section 2.4. The overall results of the comparison are
summarized in Table 1. Notice that Table 1 does not contain criterion “condition
expressiveness” which can be hardly accounted for in a table.

Well-defined semantics. Weassumepolicy languages based onLogic programming
or Description logics to have well-defined semantics. Since the formalisms under-
lying the considered policy languages will be accounted for in the following, so far
we restrict ourselves to list the languages provided with a well-defined semantics,
namely, Cassandra, EPAL, KAoS, PeerTrust, Protune, PSPL, Rei and RT .

Monotonicity. In the sense of [20] a policy language is considered to be monotonic
if disclosure of additional evidences and policies only results in the granting of
additional privileges, therefore the concept of “monotonicity” does not apply to
languages which do not provide support for credentials, namely EPAL, Ponder,
WSPL and XACML. All other languages are monotonic, with the exception
of TPL, which explicitly chose to support negative certificates, stating that a
user can be assigned a role if there exists no credential of some type claiming
something about it.

The authors of TPL acknowledge that it is almost impossible proving that
there does not exist such a credential somewhere, therefore they interpret their
statement in a restrictive way, i.e., they assume that such a credential does not
exist if it is not present in the local repository. Despite this restrictive definition
the language is not monotonic since, as soon as such a credential is released and
stored in the repository, consequences which could be previously drawn cannot
be drawn anymore.

Condition expressiveness. A role-based policy language maps requesters to roles.
The assigned role is afterwards exploited in order (not) to authorize the requester
to execute some actions. The mapping to a role may in principle be performed
according to the identity or other properties of the requester (to be stated by
some evidence) and eventually environmental factors (e.g., current time). Cas-
sandra (equipped with a suitable constraint domain) supports both scenarios.

Environmental factors are not taken into account by TPL, where the mapping
to a role is just performed according to the properties of the requester; such
properties can be combined by using boolean operators, moreover a set of built-
in operators (e.g., greater than, equal to) is provided in order to set constraints
on their values.

Environmental factors are not taken into account by RT0 either, where role
membership is identity-based, meaning that a role must explicitly list its mem-
bers; nevertheless since (i) roles are allowed to express sets of entities having a
certain property and (ii) conjunctions and disjunctions can be applied to exist-
ing roles in order to create new ones, then role membership is finally based on
properties of the requester.

210 P.A. Bonatti et al.

RT1 goes a step beyond and, by adding the notion of parametrized role, allows
to set constraints not only on properties of the requester but even on the ones of
the object, the requested action should be performed upon; the last feature makes
the second step traditional role-based policy languages consist of unnecessary,
therefore RT1, as well as the other RT flavors basing on it, may be considered
to lay on the border between role-based and non role-based policy languages.

A non role-based policy language does not split the authentication process
in two different steps but directly provides an answer to the problem whether
the requester should be allowed to execute some action. In this case the autho-
rization decision can be made in principle not only depending on properties of
the requester or the environment, but also according to the ones of the object
the action would be performed upon as well as parameters of the action itself.
EPAL introduces the further notion of “purpose” for which a request was sent
and allows to set conditions on it.

Some non role-based languages make a distinction between conditions which
must be fulfilled in order for the request to be taken into consideration (which we
call prerequisites, according to the terminology introduced by [9]) and conditions
which must be fulfilled in order for the request to be satisfied (requisites accord-
ing to [9]); not always both kinds of conditions have the same expressiveness.

Let start checking whether and to which extent the non role-based policy
languages we considered support prerequisites: WSPL and XACML allow only
to use a simple set of criteria to determine a policy’s applicability to a request,
whereas Ponder provides a complete solution which allows to set prerequisites
involving properties of requester, object, environment and parameters of the
action. Prerequisites can be set in EPAL and PSPL as well; the expressiveness
of PSPL prerequisites is the same as the one of its requisites, which we will
discuss later.

With the exception of Ponder, which allows restrictions on the environment
just for delegation policies, each other language supports requisites (Rei is even
redundant in this respect): KAoS allows to set constraints on properties of the
requester and the environment, Rei also on action parameters and Protune,
PSPL, WSPL and XACML also on properties of the object. EPAL supports
conditions on the purpose for which a request was sent but not on environmental
factors. Attributes must be typed in EPAL, WSPL, XACML and typing can be
considered a constraint on the values the attribute can assume, anyway the
definition of the semantics of such attributes is outside WSPL’s scope. Finally,
in PeerTrust conditions can be expressed by setting guards on policies: each
policy consists of a guard and a body, the body is not evaluated until the guard
is satisfied.

Underlying formalism. The most part of languages provided with a well-defined
semantics rely on some kind of Logic programming or Description logics. Logic
programming is the semantic foundation of Protune and PSPL, whereas a subset
of it, namely Constraint DATALOG, is the basis for Cassandra, PeerTrust and
RT . KAoS relies on Description logics, whereas Rei combines features of Descrip-
tion logics (ontologies are used in order to define domain classes and properties

Rule-Based Policy Representations and Reasoning 211

T
a
b
le

1
.
P
o
li
cy

la
n
g
u
a
g
e

co
m

p
a
ri
so

n
(“

–
”

=
n
o
t

a
p
p
li
ca

b
le

)

C
a
s
s
a
n
d
r
a

E
P
A

L
K

A
o
S

P
e
e
r
T
r
u
s
t

P
o
n
d
e
r

P
r
o
tu

n
e

P
S
P

L
R

e
i

R
T

T
P

L
W

S
P

L
X

A
C

M
L

W
e
ll
-d

e
fi
n
e
d

s
e
m

a
n
ti
c
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

N
o

N
o

M
o
n
o
to

n
ic

it
y

Y
e
s

–
Y
e
s

Y
e
s

–
Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

–
–

U
n
d
e
r
ly

in
g

fo
r
m

a
li
s
m

C
o
n
st

ra
in

t
D

A
T
A

L
O

G
P

re
d
ic

a
te

lo
g
ic

w
it

h
o
u
t

q
u
a
n
ti

fi
e
rs

D
e
sc

ri
p
ti

o
n

lo
g
ic

s
C

o
n
st

ra
in

t
D

A
T
A

L
O

G
O

b
je

c
t-

o
ri

e
n
te

d
p
a
ra

d
ig

m

L
o
g
ic

p
ro

-
g
ra

m
m

in
g

L
o
g
ic

p
ro

-
g
ra

m
m

in
g

D
e
o
n
ti

c
lo

g
ic

,
L
o
g
ic

p
ro

g
ra

m
-

m
in

g
,

D
e
-

sc
ri

p
ti

o
n

lo
g
ic

s

C
o
n
st

ra
in

t
D

A
T
A

L
O

G
–

–
–

A
c
ti
o
n

e
x
e
-

c
u
ti
o
n

Y
e
s

(s
id

e
-

e
ff
e
c
t

fr
e
e
)

Y
e
s

N
o

Y
e
s

(o
n
ly

se
n
d
in

g
e
v
id

e
n
c
e
s)

Y
e
s

(a
c
c
e
ss

to
sy

st
e
m

p
ro

p
e
rt

ie
s)

Y
e
s

Y
e
s

(o
n
ly

se
n
d
in

g
e
v
id

e
n
c
e
s)

N
o

N
o

N
o

Y
e
s

Y
e
s

D
e
le

g
a
ti
o
n

Y
e
s

N
o

N
o

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

(R
T

D
)

N
o

N
o

N
o

T
y
p
e

o
f
e
v
a
l-

u
a
ti
o
n

D
is

tr
ib

u
te

d
p
o
li
c
ie

s,
L
o
c
a
l

e
v
a
lu

a
ti

o
n

L
o
c
a
l

L
o
c
a
l

D
is

tr
ib

u
te

d
L
o
c
a
l

D
is

tr
ib

u
te

d
D

is
tr

ib
u
te

d
D

is
tr

ib
u
te

d
p
o
li
c
ie

s,
L
o
c
a
l

e
v
a
lu

a
ti

o
n

L
o
c
a
l

L
o
c
a
l

D
is

tr
ib

u
te

d
p
o
li
c
ie

s,
L
o
c
a
l

e
v
a
lu

a
ti

o
n

D
is

tr
ib

u
te

d
p
o
li
c
ie

s,
L
o
c
a
l

e
v
a
lu

a
ti

o
n

E
v
id

e
n
c
e
s

C
re

d
e
n
ti

a
ls

N
o

N
o

C
re

d
e
n
ti

a
ls

,
D

e
c
la

ra
-

ti
o
n
s

–
C

re
d
e
n
ti

a
ls

,
D

e
c
la

ra
-

ti
o
n
s

C
re

d
e
n
ti

a
ls

,
D

e
c
la

ra
-

ti
o
n
s

–
C

re
d
e
n
ti

a
ls

C
re

d
e
n
ti

a
ls

N
o

N
o

N
e
g
o
ti
a
ti
o
n

Y
e
s

N
o

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

N
o

N
o

Y
e
s

N
o

(p
o
li
c
y

m
a
tc

h
in

g
su

p
p
o
rt

e
d
)

N
o

R
e
s
u
lt

fo
r
-

m
a
t

A
/
D

a
n
d

a
se

t
o
f

c
o
n
-

st
ra

in
ts

A
/
D

,
s
c
o
p
e

e
r
r
o
r
,

p
o
l
i
c
y

e
r
r
o
r

A
/
D

A
/
D

A
/
D

E
x
p
la

n
a
-

ti
o
n
s

A
/
D

A
/
D

A
/
D

A
/
D

A
/
D

,
n
o
t

a
p
p
l
i
c
a
b
l
e

, i
n
d
e
t
e
r
m
i
-

n
a
t
e

A
/
D

,
n
o
t

a
p
p
l
i
c
a
b
l
e
,

i
n
d
e
t
e
r
m
i
-

n
a
t
e

E
x
t
e
n
s
ib

il
it
y

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

N
o

N
o

N
o

Y
e
s

212 P.A. Bonatti et al.

associated with the classes), Logic programming (Rei policies are actually partic-
ular Logic programs) and Deontic logic (in order to express concepts like rights,
prohibitions, obligations and dispensations). EPAL exploits Predicate logic with-
out quantifiers. Finally, no formalisms underly Ponder (which only bases on the
Object-oriented paradigm), TPL, WSPL and XACML.

Action execution. Ponder allows to access system properties (e.g., time) from
within a policy, moreover it supports obligation policies, asserting which actions
should be executed if some event happens: examples of such actions are printing
a file, tracking some data in a log file and enabling/disabling user accounts.

XACML allows to specify actions within a policy; these actions are collected
during the policy evaluation and executed before sending a response back to the
requester. A similar mechanism is provided by EPAL and of course by WSPL,
which is indeed a specific profile of XACML.

The only actions which the policy writer may specify in PeerTrust and PSPL
are related to the sending of evidences, whereas Protune supports whatever kind
of actions, not necessarily side-effect free, as long as a basic assumption holds,
namely that action results do not interfere with each other (i.e., that actions are
independent).

Cassandra (equipped with a suitable constraint domain) allows to call side-
effect free functions (e.g., to access the current time).

It is worth noticing that languages allowing to specify actions within policies
can to some extent simulate obligation policies, as long as the triggering event
is the reception of a request, although the flexibility provided by Ponder is not
met in such languages.

Finally, KAoS, Rei, RT and TPL do not support execution of actions.

Delegation. Ponder defines a specific kind of policies in order to deal with dele-
gation: the field valid allows positive delegation policies to specify constraints
(e.g., time restrictions) to limit the validity of the delegated access rights. Rei
allows not only to define policy delegating rights but even policy delegating
the right to delegate (some other right). Delegation is supported by RT D (“D”
stands indeed for “delegation”): being RT a role-based language, the right which
can be delegated is the one of activating a role, i.e., the possibility of acting as
a member of such a role.

Ponder delegation chains have length 1, whereas in RT delegation chains
always have unbounded length. Cassandra and Protune provide a more flexible
mechanism which allows to explicitly set the desired length of a delegation chain
(as well as other properties of the delegation): in order to obtain such a flexibility
the aforementioned languages do not provide high-level constructs to deal with
delegation but simulate them by exploiting more fine-grained features of the
language.

Delegation (of authority) can be expressed in PeerTrust by exploiting operator
“@”. Finally, EPAL, KAoS, PSPL, TPL, WSPL and XACML do not support
delegation.

Type of evaluation. The most part of the considered languages require that all
policies to be evaluated are collected in some place before starting the evaluation,

Rule-Based Policy Representations and Reasoning 213

which is hence performed locally: this is the way EPAL, KAoS, Ponder, RT and
TPL work.

Other languages, namely Cassandra, Rei, WSPL and XACML, perform policy
evaluation locally, nevertheless they provide some facility in order to collect
policies (or policy fragments) which are spread over the net: e.g., in XACML
combining algorithms define how to take results from multiple policies and derive
a single result, whereas Cassandra allows policies to refer to policies of other
entities, so that policy evaluation may trigger queries of remote policies (possibly
the requester’s one) over the network.

Policies can be collected into a single place if they are freely disclosable (as-
suming that the place they are collected into is not a trusted one), therefore the
languages mentioned so far do not address the possibility that policies themselves
may have to be kept private. Protection of sensitive policies can be obtained only
by providing support to distributed policy evaluation, like the one carried out
by PeerTrust, Protune or PSPL.

Evidences. Credentials are a key element in Cassandra, RT and TPL, whereas
they are unnecessary in Ponder, whose policies are concerned with limiting the
activity of users who have already been successfully authenticated.

The authors of PSPL were the first ones advocating for the need of exchang-
ing non-signed statements (e.g., credit card numbers), which they called decla-
rations ; declarations are supported by PeerTrust and Protune as well.

Finally, EPAL, KAoS, Rei, WSPL and XACML do not support evidences.

Negotiation support. As stated above, we use a narrower definition of negotiation
than the one provided in [1], into which WSPL does not fit, therefore only
pretty few languages support negotiation in the sense we specified above, namely
Cassandra, PeerTrust, Protune and PSPL.

Policy engine decision. The evaluation of a policy should end up with a result
to be sent back to the requester. In the easiest case such result is a boolean
stating whether the request was (not) accepted (and thereby accomplished):
KAoS, PeerTrust, Ponder, PSPL, RT and TPL conform to this pattern.

Besides permit and deny WSPL and XACML provide two other result val-
ues to cater for particular situations: not applicable is returned whenever no
applicable policies or rules could be found, whereas indeterminate accounts
for some error which occurred during the processing; in the latter case optional
information is available to explain the error.

A boolean value, stating whether the request was (not) fulfilled, does not make
sense in the case of an obligation policy, which simply describes the actions which
must be executed as soon as an event (e.g., the reception of a request) happens,
therefore besides the so-called rulings allow and deny EPAL defines a third
value (don’t care) to be returned by obligation policies; one of the elements
an EPAL policy consists of is a global condition which is checked at the very
beginning of the policy evaluation: not fulfilling such a condition is considered an
error and a corresponding error message (policy error) is returned; a further
message (scope error) is returned in case no applicable policies were found.

214 P.A. Bonatti et al.

Cassandra’s request format contains (among others) a set of constraints c
belonging to some constraint domain; the response consists of a subset c′ of c
which satisfies the policy; in case c′ = c (resp. c′ is the empty set) true (resp.
false) is returned.

Protune allows for more advanced explanation capabilities: not only is it pos-
sible to ask why (part of) a request was (not) fulfilled (Why and Why-not queries
respectively), but the requester is even allowed to ask since the beginning which
steps she has to perform in order for her request to be accomplished (How-to
and What-if queries).

A rudimentary form of What-if queries is supported also by Rei obligation
policies: the requester can decide whether to complete the obligation by com-
paring the effects of meeting the obligation (MetEffects) and the effects of not
meeting the obligation (NotMetEffects).

Extensibility. Extensibility is a fuzzy concept: almost all languages provide some
extension points to let the user adapt the language to her current needs, never-
theless the extension mechanism greatly varies from language to language: here
we will briefly summarize the means the various languages provide in order to
address extensibility.

Extensibility is described as one of the criteria taken into account in designing
Ponder: in order to provide smoothly support to new types of policies that may
arise in the future, inheritance was considered a suitable solution and Ponder
itself was therefore implemented as an object-oriented language.

XACML’s support to extensibility is two-fold

– on the one hand new datatypes, as well as functions for dealing with them, may
be defined in addition to the ones already providedby XACML. Datatypes and
functionsmust be specified inXACMLrequests,which indeed consists of typed
attributes associatedwith the requesting subjects, the resource actedupon, the
action being performed and the environment

– as we mentioned above, XACML policies can consist of any number of dis-
tributed rules; XACML already provides a number of combining algorithms
which define how to take results from multiple policies and derive a single re-
sult, nevertheless a standard extension mechanism is available to define new
algorithms

Using non-standard user-defined datatypes would lead to wasting one of the
strong points of WSPL, namely the standard algorithm for merging two poli-
cies, resulting in a single policy that satisfies the requirements of both (assuming
that such a policy exists), since there can be no standard algorithm for merging
policies exploiting user-defined attributes (except where the values of the at-
tributes are exactly equal); use of non-standard algorithms would in turn mean
that the policies could not be supported using a base standard policy engine.
Being standardization the main goal of WSPL, no wonder that it comes short
on the topic “extensibility”, which is not necessarily a drawback, if the assertion
of [1] holds: “most Web Services will probably use fairly simple policies in their
service definitions”.

Rule-Based Policy Representations and Reasoning 215

Ontologies are the means to cater for extensibility in KAoS and Rei: the
use of ontologies facilitates a dynamic adaptation of the policy framework by
specifying the ontology of a given environment and linking it with the generic
framework ontology; both KAoS and Rei define basic built-in ontologies, which
are supposed to be further extended for a given application.

Extensibility was the main issue taken into account in the design of Cassan-
dra: its authors realized that standard policy idioms (e.g., role hierarchy or role
delegation) occur in real-world policies in many subtle variants: instead of em-
bedding such variants in an ad hoc way, they decided to define a policy language
able to express this variety of features smoothly; in order to achieve this goal, the
key element is the notion of constraint domain, an independent module which is
plugged into the policy evaluation engine in order to adjust the expressiveness
of the language; the advantage of this approach is that the expressiveness (and
hence the computational complexity) of the language can be chosen depending
on the requirements of the application and can be easily changed without having
to change the language semantics.

A standard interface to external packages is the means provided by Protune
in order to support extensibility: functionalities of a component implementing
such interface can be called from within a Protune policy.

Finally, PeerTrust, PSPL, RT and TPL do not provide extension mechanisms.

2.6 Discussion

In this section we review the comparison performed in section 2.5 and provide
some general comments.

By carrying out the task of comparing a considerable amount of policy lan-
guages, we came to believe that they may be classified in two big groups col-
lecting, so to say, standard-oriented and research-oriented languages respectively.
EPAL, WSPL and XACML can be considered standard-oriented languages since
they provide a well-defined but restricted set of features: although it is likely that
this set will be extended as long as the standardization process proceeds, so far
the burden of providing advanced features is charged on the user who need them;
standard-oriented languages are hence a good choice for users who do not need
advanced features but for whom compatibility with standards is a foremost issue.

Ponder, RT and TPL are somehow placed in between: on the one hand Pon-
der provides a complete authorization solution, which however takes place after
a previously overcome authentication step, therefore Ponder cannot be applied
to contexts (like pervasive environments) were users cannot be accurately iden-
tified; on the other hand RT and TPL do not provide a complete authorization
solution, since they can only map requesters to roles and need to rely on some ex-
ternal component to perform the actual authentication (although parametrized
roles available in RT1 and the other RT flavors basing on it make the previous
statement no longer true).

Finally research-oriented languages strive toward generality and extensibility
and provide a number of more advanced features in comparison with standard-
oriented languages (e.g., conflict harmonization in KAoS and Rei, negotiations

216 P.A. Bonatti et al.

in Cassandra, PeerTrust and PSPL or explanations in Protune); they should
be hence the preferred choice for users who do not mind about standardization
issues but require the advanced functionalities that research-oriented languages
provide.

3 A Framework for Semantic Web Policies

The languages presented in Section 2 can be expected to be used by security
experts or other computer scientists. Common users cannot profit for them,
since almost no policy framework offers facilities or tools to meet the needs of
users without a strong background in computer science. Yet usability is a major
issue in moving toward a policy-aware web. It is well known that as protection
increases, usability is affected by the extra steps required for authentication and
other operations related to access control. The information collected for security
and privacy purposes extends the amount of sensitive information released by
users while navigating the web. Moreover, it is frequently not clear to a common
user which policy is actually applied by a system, and which are its consequences
(cf. Virgin’s case mentioned in Section 1). Similarly, common users may find it
difficult to formulate their own privacy requirements and compare them with
whatever privacy policy is advertised by a Web Service.

The work on policies carried out within the network of excellence REWERSE
has tackled these aspects by regarding policies as semantic markup. By regarding
policies as pieces of machine understandable knowledge:

– it is possible to assist some of the operations related to access control and
information release, thereby improving a user’s navigation experience;

– it is easier to support attribute-based access control, that increases the level
of privacy in on-line transactions;

– it is possible to create policy documentation automatically; in this way align-
ment is guaranteed between the policy enforced by the system and the policy
documented in natural language for end users; moreover it is possible to spe-
cialize explanations to specific contexts (such as a particular transaction);
this may help users to understand why a transaction fails (policy violation
or technical problems?), how to get the permissions for obtaining a service,
and so on;

– it is possible to create tools for verifying policies and more generally support-
ing policy authoring; other tools may help users to compare privacy policies
and make (semi-)automated policy-aware service selections.

In this section we describe the policy framework Protune, designed and imple-
mented within REWERSE to incarnate the above ideas. Protune is meant to
support policy creation and advanced policy enforcement, providing not only tra-
ditional access control but also trust negotiation (to automate security checks
and privacy-aware information release) and second generation explanation facil-
ities (to improve user awareness about—and control on—policies).

In the next section we summarize the different semantic techniques applied in
Protune. Section 3.2 introduces a possible reference scenario that inspires most

Rule-Based Policy Representations and Reasoning 217

of the examples used in the following sections. Then Section 3.3 recalls the policy
language and the core functionalities of Protune, followed by a section devoted
to the explanation facility Protune-X. When needed, we point out differences
from the previous theoretical papers that set the foundations of Protune and
Protune-X [11,12]. Sections 3.5 and 3.6 describe the implementation and the
existing facilities for integrating Protune in a web application such as policy-
driven personalized presentation of web content. In Section 3.7 we report the
results of a preliminary experimental performance evaluation. The chapter is
concluded by a section on further research perspectives.

3.1 Policies as Semantic Markup in Protune

Policies are semantic markup because they specify declaratively part of the se-
mantics (in terms of behavior constraints and admissible usage) of the static
or dynamic resources that policies are attached to. Accordingly, semantic tech-
niques have several roles in Protune:

– Policies are formulated as sets of axioms and meta-axioms with a formal,
processing-independent semantics; this is the basis for consistent treatment
of policies for different tasks: enforcement, negotiation, explanations, valida-
tion, etc.;

– The aforementioned tasks involve different automated reasoning mechanisms,
such as deduction for enforcement, abduction and partial evaluation for ne-
gotiation, pruning and natural language generation for explanations, etc.;

– The auxiliary concepts needed to formulate policies (such as what is a public
resource, what is an accepted credit card, ...) and the link between such
concepts and the evidence needed to prove their truth (e.g. which X.509
credentials are needed to prove authentication, or what forms need to be
filled in) are defined by means of lightweight ontologies that may be included
in the policy itself or referred to by means of suitable URIs; therefore, unlike
XACML contexts, Protune’s auxiliary concepts are machine understandable
and allow agent interoperability.

3.2 Negotiations

In response to a resource request, a server may return its policy for accessing
the resource. The policy may contain (a reference to) an auxiliary ontology, as
explained in the previous section. In the simplest case, user agents may use
such machine understandable information to check automatically whether the
policy can be fulfilled and how, thereby (partially) automating the operations
needed for (traditional) access control and facilitating navigation in the presence
of articulated policies. In advanced scenarios, a user agent may reply with a
counter-request in order to enforce the user’s privacy policy, as explained below.

An example scenario. Bob’s birthday is next week and Alice plans to use
today’s lunch break for buying on-line a novel of Bob’s favourite writer. She

218 P.A. Bonatti et al.

finds out that an on-line bookshop she never heard about before sells the book
at a very cheap price.

The bookshop groups its customers in different categories, according to per-
sonal data (country, age, profession . . .) and purchase-related data (frequency,
item, payment preferences . . .). Different sale strategies are applied to different
customer categories (e.g. prices discounted to different rates, no delivery fees,
sending of promotional material, and so on).

By interacting with the bookshop’s server Alice learns that she has to provide
either her credit card number or a pair (userId, password) for a previously
created account. This is just the bookshop’s default policy, the custom-tailored
policies described above are disclosed only after getting more information about
the customer.

Alice does not want to create a new account on the fly, so releasing her credit
card is the only option. However she is willing to give such information only to
trusted on-line shops (let say, belonging to the Better Business Bureau – BBB),
therefore she asks the bookshop to provide such information.

The bookshop belongs indeed to the BBB and is willing to disclose such
credential to anyone. This satisfies Alice, who provides her credit card number.

After having interacted with the VISA server to check that the credit card
is valid, the bookshop asks Alice for other information, in order to under-
stand which customer category she belongs to and apply the corresponding sale
strategy.

The lunch break is already over and Alice has no time left to provide the data
requested, therefore she decides to abort the transaction.

Scenario revisited. Automated server and client policy processing may signif-
icantly speed up interactions like the above. As soon as Alice decides which book
she wants to buy, a negotiation between her agent and the on-line bookshop’s
agent would be triggered. Since the bookshop is not willing to provide the book
for free, it would answer by returning its (default) policy protecting the book.
The returned policy would contain the description of the actions Alice has to
perform (either sending a credit card number or providing log-in data): the use
of shared ontologies to identify such actions would grant common understanding
of their semantics. Alice’s agent would then quickly check whether the server’s
policy can be fulfilled and how. Additionally, in the presence of a privacy policy,
Alice’s agent would reply with a counter-request asking the bookshop to provide
a certificate. Again, the common vocabulary would allow the bookshop to under-
stand the request, which would be accepted since the certificate is not protected
by any policy, and as a consequence Alice would finally deliver her credit card
number and have the book delivered.

The availability of a framework capable to enforce access control and nego-
tiations automatically given the two policies has remarkable consequences on
privacy as well as usability. On the one hand a direct intervention of the user in
the decision process would be required less frequently, since the user’s decision
would be already embedded to some extent into the policies (s)he defines: there-
fore sensitive resources would (or would not) be disclosed without necessarily

Rule-Based Policy Representations and Reasoning 219

Fig. 1. Protune’s architecture

asking the user each and every time. On the other hand, such usability im-
provement may encourage users to refine their policies by specifying articulated
(eventually attribute-based) policies, thereby improving privacy guarantees.

3.3 Protune’s Policy Language and Framework

In order to support assisted credential dislosure and handle negotiations (when
needed), Protune’s architecture comprises negotiation agents both on server side
and on client side, as illustrated by Fig 1. Each agent reasons about access control
or information disclosure policies to interpret the requests of the other peer and
select possible negotiation actions.

Protune’s policy language is a logic programming language enhanced with an
object oriented syntax. For example, the rule that allows to buy a book by giving
a credit card could be encoded with a set of rules including:

allow(buy(Resource))←
credential(C), valid credit card(C), accepted credit card(C).

valid credit card(C)←
C.expiration : Exp, date(Today), Exp > Today.

where C.expiration : Exp is an O.O. expression meaning that Exp is the value of
C’s attribute expiration. Protune policies may use and define different categories
of predicates:

220 P.A. Bonatti et al.

– decision predicates, used to specify a policy’s outcome, such as allow() in
the above example;3

– provisional predicates, that are meant to represent actions as described be-
low;

– abbreviation predicates, defining useful abstractions such as valid credit card.

Protune supports two pre-defined provisional predicates: credential and declara-
tion. An atom credential(X) is true when an object X representing an X.509 cre-
dential is stored in the current negotiation state. A peer may make credential(X)
true on the other peer by sending the corresponding credential; this is the ac-
tion attached to this particular provisional predicate. Predicate declaration is
analogous but its argument is an unsigned semi-structured object similar to a
web form that, for example, can be used to encode a traditional password-based
authentication procedure as in:

authenticated←
declaration(D), valid login data(D.username,D.password).

When a set of rules like the above one is disclosed by a server in response to a
client’s request, the client—roughly speaking—works back from allow(Request)
looking for the credentials and declarations in its portfolio that match the con-
ditions listed in the rules’ bodies. In logical terms, the selected credentials and
declarations (represented as logical atoms) plus the policy rules should entail
allow(Request): this is called an abduction problem by the automated reasoning
community. After receiving credential and declarations from a client, a server
checks whether its policy is fulfilled by trying to prove allow(Request) using its
own rules and the new atoms received from the client, as in a standard deduction
problem.

When a client enforces a privacy policy and issues a counter-request as in
Alice’s scenario, the roles of the two peers are inverted: the client plays the role
of the server and viceversa. For example, the client may publish rules governing
credit card release such as:

allow(release(C))← credit card(C), bbb member(Server), . . .
bbb member(Server)← credential(BBB), BBB.issuer =′′ BBB CA′′, . . .

Abbreviation predicates define in a machine understandable way the meaning
of the conditions listed in rule bodies (unlike XACML contexts, which are black
boxes). The rules defining such predicates constitute a lightweight, rule-based
ontology. Abbreviation predicates are eventually defined on facts (e.g., listing
the accepted credit cards, or the certification authorities recognized by a server)
and/or on X.509 credentials and declarations, as in the rules for authenticated
and bbb member. Therefore, the ontologies associate each condition in a policy
rule to the kind of evidence needed to fulfill the condition (specifying whether it
should be signed or unsigned, issued by which certification authority, with what

3 The specifications in [11] include also a predicate to sign and issue new credentials;
this predicate is not yet implemented.

Rule-Based Policy Representations and Reasoning 221

attributes, etc.) as well as the actions that need to be taken. In this way, nego-
tiation agents can interoperate even if their policies use different abbreviation
predicates.

So far, we have illustrated only information disclosure actions, such as those
associated to credential and declaration. However, policies may require to exe-
cute actions that do not have negotiation purposes, such as logging some requests
or notifying an administrator. New provisional predicates like these can be de-
fined by means of metapolicies that specify the action associated to a predicate
and the actor in charge of executing the action, for example:

log(X)→ type : provisional .
log(X)→ action :′ echo $X > logfile ′.
log(X)→ actor : self .

where “→” connects a metaterm to its metaproperties.
Rules and ontologies may be sensitive. For example, a server may want to

publish which credit cards it accepts, but not the list of username and passwords
encoded by predicate valid login data. As another example, in a social network
scenario a rule such as

allow(download(pictures))← best friend

may have to be protected, because in case of a denial it may reveal to a friend
that he or she is not considered as a best friend. The sensitivity level of predicates
and rules is defined with metapolicies, e.g. by means of metafacts like

valid login data(X , Y)→ sensitivity : private.

Such metapolicies drive a policy filtering process that selects relevant rules (for
efficiency), and removes sensitive parts if needed. The first definition of policy
filtering [11] performed also partial evaluation w.r.t. the available facts. The
current implementation does no partial evaluation anymore because (i) it may
significantly increase the size of the messages exhanged during negotiations,
and (ii) it destroys much of the structure of the policies thereby making the
explanation facility (illustrated later on) much less effective.

Metapolicies are also used for other purposes, such as specifying atom ver-
balizations (see Section 3.4), controlling when actions are to be executed, and
more generally driving negotiations in a declarative way. Metapolicies are an
effective declarative way of adapting the framework to new application domains
by means of activities much closer to configuration than general program en-
coding, thereby reducing deployment efforts and costs. For more details on the
metapolicy language and its possible uses see [11] and REWERSE deliverable
I2-D2 reachable from http://rewerse.net. Such documents illustrate also the
facilities for integrating legacy software and data.

3.4 Explanations: Protune-X

Even with a policy with relatively few rules it could be hard for a common user—
with neither a general training in Computer Science nor a specific knowledge of

http://rewerse.net

222 P.A. Bonatti et al.

mechanisms and formats of the system—to understand what is actually required
to access a certain service. Even more, a denial that results simply in a no
does not help a user to see what has gone wrong during an acknowledgment
process and hence may discourage new users from using a system. Therefore,
a policy framework such as Protune would be effective only if it provides some
explanation facilities that increase the user’s awareness and control over a policy
and provide a means to ask the system why a certain acknowledgment has been
denied or granted.

Protune-X, the explanation facility of Protune, plays an essential role in im-
proving user awareness about—and possibly control over—the policy enforced
by a system. Protune-X is also a major element of Protune’s cooperative en-
forcement strategy: the explanation system is meant to enrich the denials with
information about how to obtain the permissions (if possible) for the requested
service or resource.

For this purpose four kinds of queries are supported: How-to queries provide
a description of a policy and may help a user in identifying the prerequisites
needed for fulfilling the policy. How-to queries may also be used to verify a
complex policy. What-if queries are meant to help users foresee the results of
a hypothetical situation, which may be useful for validating a policy before its
deployment. Finally, why and why-not queries explain the outcome of a concrete
negotiation (i.e. provide a context-specific help). Why/why-not queries can be
used both by end users who want to understand an unexpected response, and
by policy administrators who want to diagnose a policy.

Some of the major desiderata that guided the design of Protune-X are:

– Explanations should not increase significantly the computational load of the
servers. The explanation-related processes have not to be interwoven with
the reasoning process of Protune. On the contrary, it would be desirable
that the server simply provides the relevant piece of information (rules and
facts) whenever an explanation is demanded and the client has the burden
to produce it. For this reason explanations are produced in our approach by
a distinct module, ProtuneX, which operates client-side.

– Almost no further effort should be added to the policy instantiation phase.
This is achieved by exploiting generic heuristics as much as possible. For
example how-to explanations exploit the actor meta-attributes defined in
the metapolicy to distinguish automatically the prerequisites that should
be satisfied by users from the conditions that are locally checked by the
server. In most cases, the only extra effort needed for enabling explanations
consists in writing verbalization metarules in order to specify how single,
domain-specific atoms have to be rendered, e.g.:

passwd(X ,Y)→ verbalization : Y & “is the correct password of ′′ & X .

– Explanation have to be presented in manageable pieces. An acknowledgment
process is essentially an attempt to show that some (state or provisional)
facts satisfy/not satisfy a policy. This proof generally consists of an AND-
OR tree where each node is a goal, OR-alternatives represent the different

Rule-Based Policy Representations and Reasoning 223

Fig. 2. A ProtuneX screenshot

rules that apply to that goal. Finally, AND -edges are the subgoals in the
body of each rule. This structure cannot be easily captured all in a single
view, therefore ProtuneX represents it by means of linked web-pages. Each
web-page represents a view on a single goal and the rules that apply to it.
Web-pages are linked in order to form a tree that reproduces the structure
of the proof.

– Explanations should be presented in a user-friendly format. ProtuneX is
meant to present explanations in natural language with the help of ver-
balization metarules.

– Explanations should support so-called second generation features. Such fea-
tures include methods to highlight relevant information while pruning irrel-
evant parts and make easier to focus on the paths that do not match the
expectations of the user.

In the following we illustrate some of these second-generation features by means
of examples taken or adapted from the on-line demo. For a deeper discussion
and a more complete description of Protune-X the reader is referred to [12].

A typical why-not explanation for a failed negotiation is an HTML hypertext
whose first page may look like the screenshot in Fig. 2. The explanation may
look different depending on the causes of failure. In Fig. 2 the negotiation fails
because the paper is not public and the user released an invalid ID credential;
if the ID credential were valid, then other conditions in the body of the rule
corresponding to the second item would become relevant to explain the failure
and would appear in the explanation, as in

– Rule [4] cannot be applied:

• J. Smith is authenticated [details]

but

• There is no Subscription such that J. Smith subscribed the

Subscription [details].

Note that the same rule can be explained in a completely different way depending
on the context. This is an example of irrelevant information pruning, that results
from another generic heuristic adopted by Protune-X. It exploits the metarules
identifying so-called blurred predicates, that is, predicates whose definition is

224 P.A. Bonatti et al.

not communicated because the predicate is either sensitive or too large to be
transmitted efficiently over the network. Such predicates are not (completely)
evaluated, therefore in selected cases they cannot be responsible for success or
failure. A few more features can be illustrated via the following explanation item:

– Rule [6] cannot be applied:

• c012 is an id whose name is J. Smith and issuer is myCA

but

• myCA is not a recognized certification authority [details].

Here the first bullet covers several atoms in the body of Rule [6], whose internal
format looks like

. . . , credential(C), C.name:User, C.issuer:CA, . . .

In this case the variables are bound to constants c012, ‘J. Smith’, myCA because
there is a unique answer substitution for this group of atoms; this heuristics is
called unique answer propagation. Moreover the group of atoms is verbalized in
one phrase because the group constitutes a so-called cluster. These heuristics
enhance readability by producing text about concrete entities (as opposed to
variables with unspecified values) and referring to structured objects through
their properties (name and issuer) rather than internal handlers (c012) that
are meaningless to users.

However, if the user had provided a credential that had not been recognized
as an identifier, the resulting explanation would have been

– Rule [6] cannot be applied:

• I find no Credential such that the Credential is an id [details]

This is another example of pruning irrelevant information, if an object of a
certain type is not found, as an id credential in this case, it is not relevant to
report its properties.

The explanation hypertext can be navigated by clicking on the [details]
links, that give more details about why the corresponding condition succeeds
or fails. Note that this presentation technique combines local information (the
rules that directly apply to a specific condition) with global information (which
conditions eventually succeed, which of them fail, which answer substitutions
are returned) that together describe a set of alternative (possibly incomplete or
failed) proof attempts. For example, in case the types of subscription that allow
to download the paper did not match the ones owned by J. Smith, we can obtain
the following explanation.

– Rule [3] cannot be applied:

• J. Smith is authenticated [details]

but the following conditions cannot be simultaneously satisfied:

• J. Smith subscribed some Subscription [Subscription = basic

computer pubs] [Subscription = basic law pubs]

• paper 0123.pdf is available for the Subscription [Subscription =

gold subscription] [Subscription = complete computer pubs]

Rule-Based Policy Representations and Reasoning 225

As you can see, the conditions J. Smith subscribed some Subscription and pa-
per 0123.pdf is available for the Subscription do not have a common answer,
therefore ProtuneX states that they cannot simultaneously satisfied. But, as
they singularly succeed, ProtuneX provides a global view on the their possible
results. So the user can more easily follow the paths that do not match the user
expectations and focus more rapidly on the pages of interest.

3.5 The Engine

Protune can be entirely compiled onto Java bytecode. Network communications
and the main flow of control for negotiations are implemented directly in Java,
while reasoning (including filtering) is implemented in TuProlog, a standard
Prolog that can be compiled onto Java bytecode.

Figure 3 shows the overall algorithm for a single negotiation step implemented
within the Protune system.

– rfp ≡ Received filtered policy
– s ≡ Negotiation state
– rn ≡ Received notifications
– g ≡ Overall goal
– op ≡ Other peer
– ta ≡ Termination Algorithm
– ass ≡ Action Selection Strategy

1: add(rfp, s)
2: add(rn, s)
3: Action[] la = extractLocalActions(g, s)
4: while(la.length != 0)
5: Notification[] ln = execute(la)
6: add(ln, s)
7: la = extractLocalActions(g, s)
8: if(prove(g, s))
9: send(SUCCESS, op)
10: return
11: if(isNegotiationFinished(s, ta))
12: send(FAILURE, op)
13: return
14: Action[] ua = extractUnlockedExternalActions(g, s)
15: Action[] aa = selectActions(ass, ua, s)
16: Notification[] sn = execute(aa)
17: FilteredPolicy sfp = filter(g, s)
18: add(sfp, s)
19: add(sn, s)
20: send(sfp, op)
21: send(sn, op)

Fig. 3. Negotiation algorithm pseudocode

At each negotiation step a peer P1 sends another peer P2 a (potentially empty)
filtered policy rfp and a (potentially empty) set of notifications rn, respectively
stating the conditions to be fulfilled by P2, and notifying the execution by P1 of
any actions it was asked for. As soon as P2 receives this information, it adds it
to its negotiation state.

Then P2 processes its local policy in order to identify the local actions that
can be performed taking into account the new information received. When such
local actions are performed, other local actions may become ready for execu-
tion: this is the case e.g., if the instantiation of a variable is a prerequisite for

226 P.A. Bonatti et al.

the execution of an action and the instantiation of this variable is (part of)
the result of another action’s execution like in the following example, where the
execution of action1 makes action2 ready for execution.

. . .← action1(X), action2(X).

action1()→ actor : self.
action1()→ execution : immediate.

action2()→ actor : self.
action2(X)→ execution : immediate← ground(X).

For this reason local action selection and execution are performed in a loop, until
no more actions are ready to be executed. The need for iteration was overlooked
in [11] and is documented in this chapter for the first time.

After having performed all possible local actions the local policy is processed
in order to check whether the overall goal of the negotiation is fulfilled. If this is
the case, a message is sent to P1 telling that the negotiation can be successfully
terminated. Otherwise the Termination Algorithm is consulted in order to decide
whether the negotiation should continue or fail.

If the negotiation is not yet finished, then two processes have to be performed

– It is P2’s turn to filter its local policy and collect all items that have to be
sent back to P1;

– P2 has to decide which of the actions whose execution has been requested by
P1 will be performed. Therefore, it processes its local policy and the (last)
filtered policy received from P1 in order to identify such actions. Notice that
only actions such that the policies protecting them are fulfilled (unlocked
actions) are collected.

Unlocked actions represent potential candidates to execution, i.e., those actions
which can be performed according to P2’s local policy and its current negotiation
state. However, just a subset of them will be actually performed, namely the one
selected by the Action Selection Function. At each step of the negotiation, Pro-
tune builds an AND-OR tree with all the actions (e.g., information disclosure)
that must be performed in order to advance the negotiation. This AND-OR tree
is passed to a class implementing an Action Selection Function. Such a class can
be custom and it just needs to follow an open API 4. Protune provides out-of-
the-box a “relevant” strategy that performs in parallel those actions required to
advance the negotiation. We are also working on strategies based on preferences
defined by the user between pairs of actions (e.g., it is preferred to provide in-
formation related to my credit card than to my bank account) and use them at
run-time. “Good” negotiation strategies are discussed in [25,5].

Finally, the filtered policy and the notifications of the performed external
actions are added to the negotiation state and sent to P1.
4 Cf. http://www.l3s.de/~olmedilla/policy/doc/javadoc/org/policy/strategy/
ActionSelectionStrategy.html

http://www.l3s.de/~olmedilla/policy/doc/javadoc/org/policy/strategy/ActionSelectionStrategy.html
http://www.l3s.de/~olmedilla/policy/doc/javadoc/org/policy/strategy/ActionSelectionStrategy.html

Rule-Based Policy Representations and Reasoning 227

3.6 Demo: Policy-Driven Protection and Personalization of Web
Content

Open distributed environments like the World Wide Web offer easy sharing of
information, but provide few options for the protection of sensitive information
and other sensitive resources. Furthermore, many of the protected resources are
not static, but rather generated dynamically, and sometimes the content of a
dynamically generated web page might depend on the security level of the re-
quester. Currently these scenarios are implemented directly in the scripts that
build the dynamic web page. This typically means that the access control deci-
sions that can be performed are either simple and inflexible, or rather expensive
to develop and maintain. Moreover it is commonly accepted that access control
and application logic should be kept separate, as witnessed by the design of pol-
icy standards such as XACML and the WS-* suite. Frameworks like Protune
provide a flexible and expressive way of specifying access control requirements.

We have integrated Protune in a Web scenario capable of advanced deci-
sions based on expressive conditions, including credential negotiation to establish
enough trust to complete a transaction while obtaining some privacy guarantees
on the information released [11]. We have developed a component that is easily
deployable in web servers supporting servlet technology (we currently support
Apache Tomcat), which adds support for negotiations and policy reasoning. It
allows web developers to protect static resources by assigning policies to them.
In addition to protection of static content, it also allows web developers to gen-
erate parts of dynamic documents based on the satisfaction of policies (possibly
involving negotiations). We provide an extension to the web design tool Macro-
media Dreamweaver in order to help web designers to easily and visually assign
policies to their dynamic web pages5.

A live demo is publicly available6 as well as a screencast7.

3.7 Experimental Evaluation

In order to evaluate the performance of Protune we first focused on its efficiency
in carrying out negotiations. To this aim we measured the duration of each step
of the negotiation algorithm described in Section 3.5 with a profiling tool we
built exploiting the log4j 8 utility by the Apache foundation.

In the absence of large bodies of complex formalized policies, we further de-
veloped a module to automatically generate policies according to the following
input parameters: number of negotiation steps, number of rules per predicate,
number of literals per rule body.

5 As described in http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/

admin/?pagename=Integration+with+Dreamweaver
6 http://policy.l3s.uni-hannover.de/
7 http://www.viddler.com/olmedilla/videos/1/. We recommend viewing it in full

screen.
8 http://logging.apache.org/log4j/

http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/admin/?pagename=Integration+with+Dreamweaver
http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/admin/?pagename=Integration+with+Dreamweaver
http://policy.l3s.uni-hannover.de/
http://www.viddler.com/olmedilla/videos/1/
http://logging.apache.org/log4j/

228 P.A. Bonatti et al.

Table 2. Overall reasoning and network time (msec)

Reasoning time Network time

3 steps

Definitions Definitions
1 2 3 4 1 2 3 4

Literals

1 8 + 6 + 6 5 + 4 + 4 5 + 4 + 4 5 + 10 + 4 10 7 7 7
2 5 + 4 + 5 5 + 4 + 4 5 + 4 + 10 5 + 3 + 4 9 7 7 6
3 5 + 4 + 4 5 + 3 + 4 5 + 4 + 4 5 + 4 + 4 7 7 6 7
4 5 + 10 + 5 5 + 3 + 5 5 + 3 + 4 5 + 4 + 4 7 7 7 7

5 steps

Definitions Definitions
1 2 3 4 1 2 3 4

Literals

1 16 + 20 + 34 34 + 54 + 50 81 + 93 + 111 199 + 173 + 208 14 17 18 18
2 35 + 40 + 41 66 + 120 + 91 165 + 241 + 206 397 + 445 + 409 16 16 18 19
3 42 + 78 + 56 116 + 212 + 161 291 + 481 + 347 646 + 867 + 719 17 17 19 19
4 75 + 105 + 77 189 + 365 + 222 470 + 789 + 560 1012 + 1445 + 1173 17 17 20 21

7 steps

Definitions Definitions
1 2 3 4 1 2 3 4

Literals
1 65 + 37 + 47 196 + 100 + 63 1059 + 394 + 160 1922 + 893 + 230 19 12 20 14
2 187 + 91 + 53 771 + 736 + 147 4423 + 3701 + 617 8526 + 12065 + 3030 12 12 14 14

Table 3. Realistic experiments for Protune core (left), and Protune-X performance
(right)

Reasoning time Network time
6 + 35 + 21 11
1 + 2 + 4 8

5 + 23 + 17 8
1 + 2 + 5 7
1 + 2 + 4 7

pol. size output size processing time page rate page squared rate
18 10 400 ± 70 40 4
35 20 1710 ± 60 85 4.3
71 22 2100 ± 50 95 4.3
42 31 3095 ± 31 99 3.2
40 32 3760 ± 40 117 3.7
42 35 3100 ± 40 88 2.5
40 41 6540 ± 130 159 3.9
39 41 6130 ± 30 150 3.6
59 42 5100 ± 60 121 2.9
83 46 6000 ± 60 130 2.8
57 50 8030 ± 90 160 3.2
109 63 20140 ± 110 319 5.0

Finally we assembled the components described above in a package which
is freely available at http://skydev.l3s.uni-hannover.de/gf/project/
protune/wiki/?pagename=Evaluation.

We ran a first set of experiments with realistic policies inspired by our refer-
ence scenarios. The results, reported in the leftmost part of Table 3, show that
in these cases the system’s performance is fully satisfactory. Then we tried the
system on artificial policies that create large trees of dependencies: the root is
the requested resource; its children (i.e., the 1st level of the tree) are the creden-
tials needed to get the resource; the 2nd level is the set of counter-requests of
the client that are needed to unlock the credentials in the 1st level, and so on.
The artificial aspects in such examples consist in the exponential number of cre-
dentials involved (corresponding to tree nodes) and the chains of dependencies
between them (usually shorter and sparser in realistic scenarios). Table 2 reports
the results of these experiments, some of which are interrupted after 150sec. The
frontier of terminating runs touches examples with hundreds or thousands of in-
terrelated credentials, which explains the high values for reasoning time. Given
the size of the examples involved, we conclude that this technology can scale
up to policies and portfolios of credentials and declarations significantly larger
than those applied today. This is interesting because the availability of frame-
works like Protune may encourage the adoptions of policies more articulated and
sophisticated than those deployed today.

http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/?pagename=Evaluation
http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/?pagename=Evaluation

Rule-Based Policy Representations and Reasoning 229

A performance evaluation of the explanation facility ProtuneX has been done
on a sample of 12 tests, including both realistic and artificial policies. We have
used a ProtuneX implementation designed to be run through TuProlog, the
Java-based Prolog adopted in the Protune framework. Each test has been run
20 times on a computer equipped with an 2GHz Intel dual-core duo and 2GB
ram. Table 3 (on the right) shows the obtained results: the first column reports
the size of the policy, that is, the number of its rules and metarules; the second
column reports the number of generated web pages; the third column shows for
each test the mean time (in msec) occurred to generate all the web pages and
the relative mean squared error.

Tests are ordered according to the size of their policy and the reader can
note that it is not easy to find out regularities between size and processing
time. For example, tests 2 and 3 refer to policies of approximatively the same
size, but the processing time of the latter is about 10 times longer than the
former’s one. However, if we consider test 7, whose policy size is notably larger
than 3, the number of generated web-pages is a bit bigger and accordingly the
processing time is. For this reason we have reported in column 4 the page rate,
that is, the ratio between processing time and the output size, this value grows
up linearly with respect to the output size, showing that the processing time is
approximatively quadratic in the output size (cf. column 5).

Finally, we mention that there exists also a stand-alone implementation
of ProtuneX, available at http://cs.na.infn.it/rewerse/demos/protune-x/
demo-protune-x.html, that runs on XSB-Prolog, a Prolog engine written in C
equipped with memoizing methods to improve performances and provide a more
declarative semantics than standard Prolog. Even if a precise performance eval-
uation has not yet been carried out, its performance is remarkably better (>10
time faster) than the TuProlog counterpart.

The Java-based implementation is still appealing due to deployment ease (it is
even possible to download the user agents as signed applets). However, the above
performance estimates suggest that the explanation hypertext should rather be
generated incrementally during navigation. Note that the computational load
for the hypertext generation is essentially confined on the client; the server only
needs to disclose verbalization metarules.

3.8 Discussion and Conclusions

We have illustrated the policy framework Protune and its implementation, re-
porting some positive, preliminary performance evaluation experiments. Protune
is one of the most complete frameworks according to the desiderata laid out in
the literature. It makes an essential use of semantic techniques to achieve its
goals. More information about Protune and the vision behind it can be found on
the web site of REWERSE’s working group on Policies: http://cs.na.infn.
it/rewerse/. There, on the software page, the interested reader may find links
to Protune’s software and some on-line demos and videos.

Unlike other applications of Semantic Web ideas, the main challenges for
Protune are related to usability rather than tuple-crunching. Protune currently

http://cs.na.infn.it/rewerse/demos/protune-x/
demo-protune-x.html
http://cs.na.infn.it/rewerse/
http://cs.na.infn.it/rewerse/

230 P.A. Bonatti et al.

tackles usability issues by (partially or totally) automating the information ex-
change operations related to access control and information release control, and
by supporting advanced, second generation explanation facilities for policies and
negotiations.

We are planning to continue the development of Protune by adding new fea-
tures and improving the prototype. In particular we plan to explore variants and
enhancements of what-if queries to improve policy quality. Another interesting
line of research concerns support for reliable forms of evidence not based on
standard certification authorities, e.g. exploiting services such as OpenId and
supporting user-centric credential creation (we can already support reputation-
based policies via the external call predicates [11]). Support to obligation policies
is another foreseen extension. Finally, we point the interested reader to Chap-
ter ??, where the ACE front-end for Protune is discussed. Such front-end enables
to exploit the controlled natural language ACE in order to define policies. As
soon as (controlled) natural language is made Protune’s standard user interface,
usability evaluations will be carried out as well.

Another important line of research concerns standardization. We are inves-
tigating how Protune’s policies and messages can be encoded by adapting and
combining existing standards such as XACML (for decision rules), RuleML or
RIF (for rule-based ontologies), WS-Security (for message exchange), and so on.
Concerning W3C RIF initiative, our working group has contributed with a use
case about policy and ontology sharing in trust negotiation.

References

1. Anderson, A.H.: An introduction to the web services policy language (wspl). In: 5th
IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY), pp. 189–192. IEEE Computer Society, Los Alamitos (2004)

2. Anderson, A.H.: A comparison of two privacy policy languages: Epal and xacml.
In: Proceedings of the 3rd ACM workshop on Secure web services, pp. 53–60. ACM
Press, New York (2006)

3. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (epal 1.2). Technical report, IBM (November 2003)

4. Backes, M., Karjoth, G., Bagga, W., Schunter, M.: Efficient comparison of enter-
prise privacy policies. In: Proceedings of the 2004 ACM symposium on Applied
computing, pp. 375–382. ACM Press, New York (2004)

5. Baselice, S., Bonatti, P., Faella, M.: On interoperable trust negotiation strategies.
In: IEEE POLICY 2007, pp. 39–50. IEEE Computer Society, Los Alamitos (2007)

6. Becker, M.Y., Sewell, P.: Cassandra: Distributed access control policies with tun-
able expressiveness. In: 5th IEEE International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY 2004), Yorktown Heights, NY, USA,
pp. 159–168. IEEE Computer Society, Los Alamitos (2004)

7. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE
Symposium on Security and Privacy, pp. 164–173 (1996)

8. Bonatti, P., Olmedilla, D., Peer, J.: Advanced policy explanations. In: 17th Euro-
pean Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy. IOS
Press, Amsterdam (2006)

Rule-Based Policy Representations and Reasoning 231

9. Bonatti, P., Samarati, P.: Regulating service access and information release on the
web. In: Proceedings of the 7th ACM conference on Computer and communications
security, pp. 134–143. ACM Press, New York (2000)

10. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotia-
tion with metapolicies. In: 6th IEEE International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY 2005), Stockholm, Sweden, pp. 14–23.
IEEE Computer Society, Los Alamitos (2005)

11. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotia-
tion with metapolicies. In: 6th IEEE Policies for Distributed Systems and Net-
works (POLICY 2005), Stockholm, Sweden, pp. 14–23. IEEE Computer Society,
Los Alamitos (2005)

12. Bonatti, P.A., Olmedilla, D., Peer, J.: Advanced policy explanations on the web. In:
17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda,
Italy, pp. 200–204. IOS Press, Amsterdam (2006)

13. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: 2nd IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY), pp. 18–38. Springer, Heidelberg (2004)

14. Duma, C., Herzog, A., Shahmehri, N.: Privacy in the semantic web: What pol-
icy languages have to offer. In: Eighth IEEE International Workshop on Policies
for Distributed Systems and Networks-TOC (POLICY), pp. 5–8. IEEE Computer
Society, Los Alamitos (2007)

15. Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons, K.E., Winslett, M.: No regis-
tration needed: How to use declarative policies and negotiation to access sensitive
resources on the semantic web. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R.
(eds.) ESWS 2004. LNCS, vol. 3053, pp. 342–356. Springer, Heidelberg (2004)

16. Herzberg, A., Mass, Y., Michaeli, J., Ravid, Y., Naor, D.: Access control meets
public key infrastructure, or: Assigning roles to strangers. In: 2000 IEEE Sympo-
sium on Security and Privacy, pp. 2–14. IEEE Computer Society, Los Alamitos
(2000)

17. Kagal, L., Finin, T.W., Joshi, A.: A policy language for a pervasive computing
environment. In: 4th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY), Lake Como, Italy, pp. 63–74. IEEE Computer
Society, Los Alamitos (2003)

18. Li, N., Mitchell, J.C.: Rt: A role-based trust-management framework. In: Third
DARPA Information Survivability Conference and Exposition (DISCEX III). IEEE
Computer Society, Los Alamitos (2003)

19. Lorch, M., Proctor, S., Lepro, R., Kafura, D., Shah, S.: First experiences using
xacml for access control in distributed systems. In: Proceedings of the 2003 ACM
workshop on XML security, pp. 25–37. ACM Press, New York (2003)

20. Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills,
H., Yu, L.: Requirements for policy languages for trust negotiation. In: 3rd Inter-
national Workshop on Policies for Distributed Systems and Networks (POLICY),
Monterey, CA, USA, pp. 68–79. IEEE Computer Society, Los Alamitos (2002)

21. Simon Godik, T.M.: Oasis extensible access control markup language (xacml) ver-
sion 1.0. Technical report, OASIS (February 2003)

22. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
web languages for policy representation and reasoning: A comparison of kaos, rei,
and ponder. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 419–437. Springer, Heidelberg (2003)

232 P.A. Bonatti et al.

23. Uszok, A., Bradshaw, J.M., Jeffers, R., Suri, N., Hayes, P.J., Breedy, M.R., Bunch,
L., Johnson, M., Kulkarni, S., Lott, J.: Kaos policy and domain services: Toward a
description-logic approach to policy representation, deconfliction, and enforcement.
In: 4th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY), Lake Como, Italy, pp. 93–96. IEEE Computer Society, Los
Alamitos (2003)

24. Winsborough, W., Seamons, K., Jones, V.: Automated trust negotiation. In:
DARPA Information Survivability Conference and Exposition, DISCEX 2000. Pro-
ceedings, pp. 88–102. IEEE Computer Society, Los Alamitos (2000)

25. Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and sen-
sitive policies through interoperable strategies for automated trust negotiation.
ACM Trans. Inf. Syst. Secur. 6(1), 1–42 (2003)

	Rule-based policy representations and reasoning
	Introduction
	A Review of the State-of-the-Art in Policy Languages
	Related Work
	Background
	From uid/psw-based authentication to trust negotiation.
	Policy types.

	Presentation of the Considered Policy Languages
	Presentation of the Considered Criteria
	Comparison
	Discussion

	A Framework for Semantic Web Policies
	Policies as Semantic Markup in Protune
	Negotiations
	An example scenario.
	Scenario revisited.

	Protune's Policy Language and Framework
	Explanations: Protune-X
	The Engine
	Demo: Policy-Driven Protection and Personalization of Web Content
	Experimental Evaluation
	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

