Towards Logic Programs with Ordered and Unordered Disjunction

Philipp Kärger1, Nuno Lopes2, Daniel Olmedilla3, Axel Polleres2

1 L3S Research Center and Leibniz University Hannover
2 DERI Galway, Ireland
3 Telefonica R&D, Madrid

ASPOCP Workshop at ICLP 2008, Udine, Italy, December 13th 2008
• Ordered and Unordered Disjunction
 ▪ what are they?
 ▪ why do we need both?

• DLPOD (Disjunctive Logic Programs with Ordered Disjunction)
 ▪ potential answer sets → Split programs
 ▪ optimal answer sets → Pareto optimality wrt. partial orders on literals

• Modeling partial order preferences

• Summary
Ordered and unordered

- "unordered" Disjunction
 - extension to classic logic programs:
 - `cinema v pub v tv`.
 - results in three answer sets `{cinema},{pub},{tv}`

- ordered Disjunction (Brewka et al. 2004):
 - LPOD – Logic Programming with Ordered Disjunction
 - ASP with special kind of disjunction:
 - `cinema x pub x tv`.
 - used to express preferences over literals
 - yields preferences over answer sets,
 in this case `{cinema}` is pref. to `{pub}` is pref. to `{tv}`
 - one answer set, namely `{cinema}`, (since it dominates the others)
Why both, ordered and unordered?

- preference expressions need something in between

no order (DLP)

`cinema v pub v tv`

total order (LPOD)

`cinema x pub x tv`
Towards Logic Programs with Ordered and Unordered Disjunction

Why both, ordered and unordered?

- preference expressions need something in between

no order (DLP)

- cinema v pub v tv

total order (LPOD)

- cinema x pub x tv

partial order

- cinema x (pub v tv)

 cinema is preferred over both, pub and tv, but between pub and tv, there is no preference
DLPOD – Disjunctive Logic Programs with Ordered Disjunction

cinema x (pub v tv) ← not sunny.
beach v park ← sunny.

Intuition:
• three ‘potential’ answer sets: \{cinema\}, {pub}, {tv}
• {cinema} is the most preferred one
• {cinema} is the only actual answer set of the DLPOD

Semantics:
• computing potential answer sets → split programs
• which answer set is preferred → preference relation on AS of splits
Towards Logic Programs with Ordered and Unordered Disjunction

Split programs

\[\text{cinema} \times (\text{pub} \lor \text{tv}) \leftarrow \text{not sunny}. \]

1. transform head into a normal form (ODNF):
 \[(\text{cinema} \times \text{pub}) \lor (\text{cinema} \times \text{tv}) \leftarrow \text{not sunny}. \]

2. generate all split programs (containing only \(\lor \)):

 1. \(\text{cinema} \lor \text{cinema} \leftarrow \text{not sunny}. \)

 2. \(\text{cinema} \lor \text{tv} \leftarrow \text{not sunny}, \text{not cinema}. \)

 3. \(\text{pub} \lor \text{cinema} \leftarrow \text{not sunny}, \text{not cinema}. \)

 4. \(\text{pub} \lor \text{tv} \leftarrow \text{not sunny}, \text{not cinema}, \text{not cinema}. \)
Towards Logic Programs with Ordered and Unordered Disjunction

Comparing Answer Sets

\[(\text{cinema x pub}) \lor (\text{cinema x tv}) \iff \text{not sunny.}\]

- how to decide which answer set of preferred?

- satisfaction degree vector (SDV) determines how good a particular answer set is wrt. the program
 - \(\{\text{cinema}\} \rightarrow (1,1)\)
 - \(\{\text{pub}\} \rightarrow (2,\varepsilon)\)
 - \(\{\text{tv}\} \rightarrow (\varepsilon,2)\)

- the answer sets with the Pareto optimal satisfaction degree vectors are answer sets of the DLPOD
- proper generalization of LPOD (SDV is a singleton)
Complexity and Implementation aspects

- Split programs can be arbitrary disjunctive programs
 - existence of an optimal answer set is Σ_2^p-complete
 - whether a candidate AS is optimal is in Π_2^p
 - whether a Literal l in the optimal answer set is in Σ_3^p

- We extended the notion of head-cycle-freeness for DLPODs
 - complexity drops

- Interleaved generator-tester implementation
 - using disj. ASP solvers
 - extending previous algorithms for LPOD [Brewka et al. 2004]

- Integrated implementation possible for head-cycle-free DLPODs
 - using results in [Eiter, Polleres, TPLP2006]
Towards Logic Programs with Ordered and Unordered Disjunction

An example generator

\[r = (A \times B) \lor (C \times D) \leftarrow Body. \]

(a) \[1\{c_{r,1}(1), c_{r,1}(2)\}1 \leftarrow Body. \]
\[1\{c_{r,2}(1), c_{r,2}(2)\}1 \leftarrow Body. \]

(b) \[h_{r,1} \lor h_{r,2} \leftarrow b_{r,1}, b_{r,2}, Body. \]

(c) \[h_{r,1} \leftarrow A, c_{r,1}(1). A \leftarrow h_{r,1}, c_{r,1}(1). \]
\[h_{r,1} \leftarrow B, c_{r,1}(2). B \leftarrow h_{r,1}, c_{r,1}(2). \]
\[h_{r,2} \leftarrow C, c_{r,2}(1). C \leftarrow h_{r,2}, c_{r,2}(1). \]
\[h_{r,2} \leftarrow D, c_{r,2}(2). D \leftarrow h_{r,2}, c_{r,2}(2). \]

(d) \[b_{r,1} \leftarrow c_{r,1}(1). \]
\[b_{r,1} \leftarrow c_{r,1}(2), \text{not} A. \]
\[b_{r,2} \leftarrow c_{r,2}(1). \]
\[b_{r,2} \leftarrow c_{r,2}(2), \text{not} C. \]

(e) \[\leftarrow A, \text{not} c_{r,1}(1), \text{not} B, \text{not} C, \text{not} D. \]
\[\leftarrow \text{not} A, B, \text{not} c_{r,1}(2), \text{not} C, \text{not} D. \]
\[\leftarrow \text{not} A, \text{not} B, C, \text{not} c_{r,2}(1), \text{not} D. \]
\[\leftarrow \text{not} A, \text{not} B, \text{not} C, D, \text{not} c_{r,2}(2). \]
• DLPOD is a log. programming language that allows for ordered and unordered disjunction
• a method to compute potential answer sets of such a program
• a preference notion that decides which answer sets are optimal

• But how to model general partial orders with a combination of \lor and \land ?
Towards Logic Programs with Ordered and Unordered Disjunction

Modeling partial order preferences

- **a first try**

 cinema x (pub v tv)

 put each level of the partial order
 in a disjunction and list all levels
 with ordered disjunctions:

 cinema x pub_or_tv.
 pub v tv ← pub_or_tv.
Modeling partial order preferences

- **a first try:**

 put each level of the partial order in a disjunction and list all levels with ordered disjunctions:

 cinema x (pub_or_tv) x A x C
 or?
 cinema x tv x (pub_or_A) x C
Modeling partial orders

- it is needed to encode each path of the partial order:

\[(\text{cinema } x \text{ pub } x \text{ C}) \lor (\text{cinema } x \text{ tv } x \text{ A } x \text{ C})\].
Summary:

- DLPOD allow *qualitative, partial order* preference statements in logic programming

- extension to Brewka et al.’s approach of total ordered disjunction
 - disjunctive split programs
 - fair Pareto preference definition

- DLPODs can be transformed into an interleaved disjunctive logic programs (so normal ASP solvers can handle them)

- Complexity: one level higher than LPOD (for non-head-cycle-free)
Outlook

- semantics without split programs (via reduct)
- proper formalization of distributivity of \land and \lor
- improved transformation to Ordered Disjunctive Normal Form
- remaining hardness proofs
- implementation and evaluation of the algorithms (interleaved and integrated)
- other preference definitions
Thank you for your attention.

Please let me know if there are any questions.

Philipp Kärger
kaerger@L3S.de
http://www.L3S.de/~kaerger