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ABSTRACT
Knowledge about the reception of architectural structures
is crucial for architects and urban planners. Yet obtaining
such information has been a challenging and costly activ-
ity. However, with the advent of the Web, a vast amount
of structured and unstructured data describing architectural
structures has become available publicly. This includes in-
formation about the perception and use of buildings (for
instance, through social media), and structured informa-
tion about the building’s features and characteristics (for
instance, through public Linked Data). Hence, first min-
ing (i) the popularity of buildings from the social Web and
(ii) then correlating such rankings with certain features of
buildings, can provide an efficient method to identify suc-
cessful architectural patterns. In this paper we propose an
approach to rank buildings through the automated mining of
Flickr metadata. By further correlating such rankings with
building properties described in Linked Data we are able
to identify popular patterns for particular building types
(airports, bridges, churches, halls, and skyscrapers). Our
approach combines crowdsourcing with Web mining tech-
niques to establish influential factors, as well as ground truth
to evaluate our rankings. Our extensive experimental results
depict that methods tailored to specific structure types allow
an accurate measurement of their public perception.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval;
K.4 [Computer and Society]

General Terms
Human Factors, Experimentation, Measurement.

Keywords
Web Mining, Crowdsourcing, Architectural Structures,
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1. INTRODUCTION
Urban planning and architecture encompass the require-

ment to assess the popularity or perception of built struc-
tures (and their evolution) over time. This helps to better
understand the impact of a structure, identify needs for re-
structuring or to draw useful conclusions about successful ar-
chitectural patterns and features. Thus, information about
how people think about a building that they use or see, or
how they feel about it, could prove to be invaluable for ar-
chitects, urban planners, designers, building operators, and
policy makers alike. For example, keeping track of the evolv-
ing feelings of people towards a building and its surround-
ings can help to ensure adequate maintenance and trigger
retrofit scenarios. On the other hand, equipped with prior
knowledge of specific features that are well-perceived by the
public, builders and designers can make better-informed de-
sign choices and predict the impact of building projects.

Until now, there has been limited research in the problem
of ranking architectural structures based on their associated
perception. So far, obtaining feedback about the perception
of buildings has been a challenging and costly, yet important
activity for stakeholders. Gathering such data historically
required a significant amount of manual labour. With the
advent of the Web, a substantial amount of data has become
available publicly. This data provides information about the
perception and use of buildings, for instance through social
media. The social Web provides a multitude of channels,
such as Twitter, Flickr, Foursquare, etc. for users to voice
their opinions about situations and contexts in which they
are in, often involving particular buildings. This provides
a rich source for deriving information about the popularity
and perception of certain structures of different types, such
as airports, churches, bridges, and so forth. The Web also
contains structured data about particular building features,
for example, size, architectural style, and built date of cer-
tain buildings through public Linked Data. Here in partic-
ular, reference datasets such as Freebase1 or DBpedia2 offer
useful data describing a wide range of architectural struc-
tures, concepts or geographically relevant regions.

The perception of an architectural structure itself has his-
torically been studied to be a combination of the aesthetic
as well as functionality aspects of the structure [28,29]. The
impact of such buildings of varying types on the built envi-
ronment, as well as how these buildings are perceived, thus
varies. For example, intuitively we can say that in case of

1http://www.freebase.com/
2http://www.dbpedia.org/



churches, the appearance plays a vital role in the emotions
induced amongst people. However, in case of airports or rail-
way stations, the functionality aspects such as efficiency or
the accessibility may play a more significant role. This sug-
gests that the impact of particular influential factors differs
significantly between different building types.

In this paper, we introduce a processing pipeline and ex-
periments which mine the Social Web in order to measure
(rank) popularity of architectural structure such as airports,
bridges, churches, halls, and skyscrapers. We exploit the
Web of data to correlate building rankings with correspond-
ing features, in order to enable identification of statistically
more popular architectural patterns.

Through this work, our main contributions are as follows.
• We present a method for ranking architectural struc-

tures that leverages Social Web sources and Linked
Open Data – i.e., Flickr photos and their metadata as
well as DBpedia.
• An approach to gain further insights into the percep-

tion of architectural structures, by bridging the gap
between the Social and Semantic Web (correlation of
structure features with facts from the Social Web).
• Influential factors and ground truth for ranking archi-

tectural structures as well as an empirical evaluation
of models for generating accurate rankings.

2. PROBLEM DEFINITION
Through our work, we first aim to establish automated

methods to compare and consequently rank architectural
structures of varying types. Next, by correlating the rank-
ings with structured data from DBpedia about building
characteristics, we empirically demonstrate how successful
architectural patterns can be automatically identified.

As a first step towards achieving this, we attempt to find
answers to the question: ‘How does a building make one
feel? ’ We formalize these notions as follows. We define in-
fluential factors as the aspects that influence the perception
of an architectural structure. Let B := {bi; i = 1 . . . n} be
the set of buildings or structures, and T := {tj ; j = 1 . . . z}
be the set of building types (for example, churches, halls,
skyscrapers). Given the set B of type t ∈ T , we aim to de-
termine an optimal ranked subset, F , of influential factors
which play a vital role in influencing building perception
among people.

We thereby aim to analyze the varying influence of the fac-
tors in the set, F := {fk; k = 1 . . .m} on different building
types in T . Let Profile(b) be the building profile consisting
of web data relevant to each building b ∈ B. We formulate
the perception of a building b, as the normalized sum of sen-
timents expressed towards the building, with respect to the
various influential factors.

Perception(b) :=
1

|F |

m∑
k=1

Sentifk (Profile(b)) ,

where Sentifk represents the sentiment score determined by
using the influential factor fk for the building b. Next, we
present methods to automatically rank buildings of a par-
ticular type t based on the emotions that are invoked by the
buildings among people, i.e., according to the perception
of the buildings, Perception(b). By exploiting the ranking
of architectural structures thus generated, and correlating
them with a set of characteristics C := {cl; l = 1 . . . x} of

Figure 1: Pipeline of our approach for ranking ar-
chitectural structures.

the buildings (extracted from DBpedia), we draw insights
into architectural patterns. The characteristics in C map to
DBpedia properties for the respective building b or build-
ing type t. We define an architectural pattern as a linear
combination of mappings from building characteristics in C
(eg., architectural style) to a particular value or value range
(eg., gothic). We aim to identify successful architectural
patterns, where ‘success’ is proportional to the positive per-
ception of a structure.

3. APPROACH
In this section we explain our approach to rank architec-

tural structures and mine successful architectural patterns.

3.1 Overview
We follow a threefold approach in order to rank structures

based on their perception and consequently find patterns of
well-perceived architectural structures. (i) First, we iden-
tify the influential factors. (ii) Next, we rank structures by
crowdsourcing their popularity, in order to form the ground
truth. In addition, we use automated methods for senti-
ment analysis and ranking. (iii) Finally, we correlate the
influential factors with related structured data from DBpe-
dia in order to identify well-perceived patterns for architec-
tural structures. We define a well-perceived pattern as one
that results in a high positive Perception(b) value, for any
structure b ∈ B (for example, churches with a particular
architectural style or skyscrapers with a height between x-y
metres).

Figure 1 depicts our approach to combine crowdsourcing
and Web mining methods, tailored to the type of architec-
tural structures.

3.2 Crowdsourcing Influential Factors
Recent research works in the field of Neuroscience [19,20],

reliably suggest that neurophysiological correlates of build-
ing perception successfully reflect aspects of an architectural
rule system that adjust the appropriateness of style and
content. They show that people inadvertently rank build-
ings that they see, between the categories of either high-
ranking (‘sublime’) or low-ranking (‘low’) buildings. How-



ever, what exactly makes a building likeable or prominent
remains unanswered. Size could be an influential factor. At
the same time, it is not sound to suggest that architects or
builders should design and build only big structures. For in-
stance, a small hall may invoke more sublime feelings while
a huge kennel may not. This indicates that there are addi-
tional factors that influence building perception. In order to
determine such factors, we employ crowdsourcing.

An initial survey was conducted with a primary focus on
the expert community of architects, builders, and designers
in order to determine influential factors. The survey admin-
istered 32 questions spanning over the background of the
participants and their feelings about certain type of build-
ings, namely bridges, churches, skyscrapers, halls and air-
ports. We consider these building types since they are the
most commonly found building types across different cities,
as observed from Emporis3, a real estate data mining com-
pany which is an authority on building data.

Within a two-day window, we received 42 responses from
the expert community. The important influential factors
that surfaced from the responses of the survey are presented
below.
• The history associated with a building was identified to

be an influential factor in terms of its affect on the people.
There is a semblance of reverence towards historically sig-
nificant buildings, and more often than not, they have a
positive affect on people.
For example, one expert who cited a Neutral affect from
the Berliner Dom said, ‘Personally, I don’t like such
baroque buildings but obviously it’s a valuable histori-
cal building and impressive’. Some other excerpts from
various experts that indicate the influence of historical
importance of buildings are : ‘it seems like an interest-
ing old bridge’, ‘part of the history, beautiful historical
architecture’, ‘the history of the building impresses me’.
• The imminent surroundings or the built environment

of a building play a vital role in how the building itself is
perceived. We observe that there is variance in what is
perceived to be positive, between buildings that fit well
into their surroundings and those that stand out.For ex-
ample, one expert who cited a Dislike affect from the Fifth
Avenue Presbyterian Church attributed his feelings to the
reasoning, ‘it doesn’t suit the surroundings’. Some other
excerpts from various experts that indicate the influence of
the imminent surroundings of buildings are : ‘The big ben-
efit is that plants are connected with a building-connection
of nature and architecture’, ‘style contrast with the urban
surroundings’ and so on.
• The materials used in the structure also influence the

perception of the building.
• The size of a building influences its recognizability and/or

visibility. This goes on to influence how the building is
perceived.
• Personal experiences involving a building play a key

role in influencing one’s feelings towards a building.
• The level of detail, which is an inherent part of a build-

ing’s structure is an important aspect to consider. We ob-
serve varying perceptions of intricate and complex work
in the structure of a building. Some people are highly re-
ceptive of great craftsmanship, while others prefer more

3http://www.emporis.com/

Table 1: Trusted (TR) and Untrusted Responses (UR)

from LimeService and CrowdFlower.

Building Type # TR # UR # Participants

Airports 5,012 1,441 1,301
Bridges 1,357 0 76

Churches 2,085 0 79
Halls 2,880 641 1,664

Skyscrapers 7,166 370 4,276

minimalistic art work. This includes decoration and or-
naments.
These influential factors correspond to the building types

bridges, churches, skyscrapers and halls. However, we realize
that when it comes to airports, people tend to acknowledge
the importance of functional aspects of the buildings. By ac-
counting for the functionality aspects that surfaced through
crowdsourcing, and referring to Skytrax4 (a UK-based con-
sultancy that runs an airline and airport review and ranking
site), we have arrived at the following list of influential fac-
tors for airports.
• Ease of access to the airport (car, public transport con-

nections, parking, etc.)
• Efficiency of movement/processing inside the airport (to

and from gates/terminals, security, length of required
paths/time from check-in to gate, etc.)
• General design and appearance (comfort, ambience,

natural light, views)
• Choice/availability of shops, cafes, restaurants, etc.
• Seating/ resting/ relaxing /entertainment facilities in the

airport
• Support for other miscellaneous facilities (like ATMs,

disabled access, airline lounges, telephone access, wash-
rooms, showers, etc.)
• Size of the airport

3.3 Crowdsourcing Ground Truth
We deployed surveys for each of the building types, in or-

der to establish the ground truth in each case, using Lime-
Service5 and CrowdFlower6. Respondents of the survey were
presented with the buildings of the corresponding type (see
Section 4.1 for dataset), and asked to rate them on a 5-point
Likert scale from Strongly Like to Strongly Dislike, if they
had been to the structure or seen it in person. Apart from
this, participants were also asked to indicate the degree to
which each of the influential factors determined from the ini-
tial survey (described in Section 3.2), played a role in their
decision. These results were collected in another Likert scale
from Strong Influence to No Influence. Table 1 shows the
number of unique participants or workers that contributed
to the survey(s) for the different building types.

A response is considered to be the set of answers pertain-
ing to the corresponding questions of a building b of type t.
The surveys for the bridges and churches were deployed on
LimeService and shared through online social networks in or-
der to trigger responses, while the surveys for the airports,
halls and skyscrapers were deployed on the CrowdFlower
platform with a monetary incentive for workers’ responses.

4http://www.airlinequality.com/
5http://www.limeservice.com/
6http://www.crowdflower.com/



Table 2: Influential factors for airports.

Influential Factor Influence in
Perception

Availability of shops, cafes, etc. 13.26%

Ease of access to the airport 14.58%

Efficiency of movement/processing 14.58%

General design & appearance 15.27%

Relaxing/Entertainment facilities 14.41%

Size of the airport 14.58%

Support for other miscellaneous facilities 14.03%

Table 1 reflects this variation in the number of participants
as well as responses due to the type of platform used.

In order to maintain the integrity of drawing a compari-
son between results attained from these different platforms,
we adjust for demographics, age and gender factors to avoid
bias. In order to ensure that the workers provide valid re-
sponses devoid of any deception with ulterior motives, we
intersperse the questions in the survey with test-questions
that can help us detect bots or other malicious workers aim-
ing to make quick money [6]. By doing so, we easily sepa-
rate trusted responses from the untrusted responses. On the
CrowdFlower platform there is a provision to create such
test-questions, collectively called the Gold Standard. Since
we utilize our personal and social networks to trigger re-
sponses for the surveys hosted on LimeService, we notice
that the responses we receive are all trustworthy. This can
be explained by the fact that there is no monetary incen-
tive nor any other form of explicit incentive, implying that
the workers provide responses without ulterior motives. As
reflected in Table 1, we observe no untrusted responses for
Bridges and Halls, the structures for which surveys were
hosted on LimeService.

In addition, to prevent further bias in our crowdsourced
surveys, we refrain from using images with filters or those
which are edited to enhance the object in the image. We
therefore use corresponding images obtained from Wikime-
dia Commons7 that are purely representational and devoid
of any special touch-ups. We present images of all the archi-
tectural structures in equal resolutions, since prior work has
shown that an image’s resolution and physical dimensions
affect human’s aesthetic perception of it [4].

By accumulating the responses for each building b of type
t and factoring in the scores from the 5-point Likert scale, we
arrive at normalized popularity-scores for each building. The
normalized popularity-scores are a reflection of the responses
from the workers on the Likert scale, with respect to how
they perceive the corresponding structures. We rank the
buildings within each building type based on these scores,
and adopt these rankings as the ground truth. Table 2
presents the various influential factors pertaining to airports
and their corresponding influence in building perception. We
observe that all the factors are almost equally influential. In-
terestingly, the aesthetic factor, ‘general design and appear-
ance’, is marginally more influential in building perception
than the other functionality related aspects.

7http://commons.wikimedia.org/wiki/Main_Page
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Figure 2: Comparison of influential factors.

The chart in Figure 2 shows a comparison between dif-
ferent building types with respect to the various influential
factors. We observe that the ‘uniqueness of a building ’ plays
a significant role in case of bridges and churches, while it is
less influential in the perception of halls and skyscrapers.

An observation that is common to all the building types is
a significant influence of the ‘surrounding built environment ’
in the perception of a building. This reiterates the mutual
influence of a building on its built environment and vice-
versa. Essentially, this means that as an extension, one can
explore the correlation between a building, and other indices
like ‘well-being of a community ’ or ‘the happiness index ’, by
means of the impact a building has on its built environment.

Similarly, the influence of the materials used and the ‘level
of detail ’ are significant across all the building types we con-
sider. The ‘size’ of a building, goes a long way in influencing
its perception in case of bridges and churches as opposed to
the relatively lower influence in case of halls and skyscrap-
ers. Personal experiences of people with respect to halls and
skyscrapers seem to influence their perception of the build-
ings significantly more than bridges and churches. Finally,
the ‘history associated ’ with a building plays a less influen-
tial role towards its perception. We believe this indicates
that on average people are either not aware of the historic
importance and bearing of most architectural structures, or
that their understanding of the historic bearing does not af-
fect their perception of the corresponding structures more
significantly.

3.4 Building Perception : Ranking Models
In this section we present different ranking models for

buildings, based on perception-related data extracted from
the metadata of relevant Flickr images.

As shown in Figure 3, we propose to collect data for each
of the buildings b in the set B. We create building pro-
files – i.e., a Profile(b) for each of the buildings b in the
dataset – by merging the textual metadata from relevant
Flickr images (title, description and comments) into a sin-
gle representational unit, for each image corresponding to
each building. This data will be used to generate feature
vectors corresponding to each building b in the list. We will
finally exploit different ranking models in order to rank the
buildings.



Figure 3: An example illustrating our approach to-
wards the automated ranking of structures.

Sentic Feature Vectors
In order to extract the emotions from the Flickr metadata,
we adopt a similar approach as the one introduced in [21] for
emotion detection, which uses a term-based matching tech-
nique considering 8 basic emotions according to Plutchik’s
psychoevolutionary theory of emotion [22], namely anger,
anticipation, disgust, fear, joy, sadness, surprise, trust, apart
from the positive and negative polarity associated with the
words, to come up with a significant part of our feature
vectors. To this end, we used the National Research Coun-
cil Emotion Lexicon (EmoLex) [15] as prescribed in [21].
EmoLex is a large lexicon of words annotated with the asso-
ciated emotions via the means of crowdsourcing [16]. Mov-
ing further, we create a profile for each building, Profile(b),
consisting of all the metadata from Flickr images relevant to
the building. Then, we generate a sentic feature vector that
represents the various dimensions of emotions contained in
the profile of each building. This means that the compo-
nents of the resultant vector portray each of the 8 emotions
elicited by the profile for each building. These 8 components
add up to 1 and each of them is a value ranging between 0
and 1. Apart from the 8 emotions, the polarity (positive
and negative) features add up to 1 as well.

In addition, we assume that the normalized number of fa-
vorites for each building and the normalized number of com-
ments for each building (accumulated from the metadata of
flickr images relevant to the building) depict the interest of
the people towards the building to some extent. This follows
our intuition that the favorites indicate an approval of the
buildings in the images, and can thereby be used as a signif-
icant feature to rank buildings automatically. The number
of comments can also show the interest generated by the
building in the picture. In the ranking models we employ,
we follow the steps presented below.
• We compute the feature vectors for each of the buildings

following the emotion detection procedure described in
[21].
• We divide these feature vectors corresponding to all the

buildings, into two sets (80%-20%), one for training the
model and the other for testing the predictions of the
learned model.
• We use RankSVM [8] to learn a model that can help

to automatically rank the buildings based on their cor-
responding associated emotions, since it is a widely used
in learning-to-rank tasks for Information Retrieval [14].

Automated Ranking Models
We employ different components of feature vectors, result-
ing in different ranking models. We adopt an intuitive and

exploratory combination of features, with an aim to produce
accurate building rankings.

Frequency-based Models. The normalized number of
favorites and the normalized number of comments for each
building (accumulated from the metadata of Flickr images
relevant to the building), independently form the basis of the
Frequency Models. This means that according to the Fre-
quency Model, each feature vector corresponding to a build-
ing consists of a single component; the normalized number
of favorites or comments. This follows our intuition that
the metadata from Flickr images – favorites and comments
– indicate an approval of the content reflected in the im-
ages, in our case the buildings and can thereby be used as a
significant feature to rank buildings automatically.

Polarity Model. Corresponding to each building, the
Polarity Model utilizes feature vectors with two components;
the positive and negative polarities.

Enhanced Sentic Model. In the Enhanced Sentic model
the feature vectors comprise of 12 features. Apart from the
10 sentic feature dimensions – 8 basic emotions and polar-
ity – we also include for each building the corresponding
number of favorites and number of comments, both of them
normalized.

Filter Model. The Filter Model also comprises of 12
features. It uses the influential factors we determined earlier
in Section 3.3 and filters the data profiles Profile(b), that
we create for each building b.

As a first step, we build a Bag of Words (BoW ) for each
influential factor f ∈ F , corresponding to the building type
t ∈ T . In order to do so, we use the Natural Language
Toolkit (NLTK) WordNet package for Python [1].

Using the WordNet package, we can derive the related
words corresponding to each influential factor through the
WordNet synsets. A synset or synonym ring is defined as
a set of one or more synonyms that are interchangeable in
some context without changing the truth value of the propo-
sition in which they are embedded. For example, for the
Influential Factor, Size of the building/structure, we use the
WordNet synsets to derive a BoW that are related to ‘size’.

We also use the Big Huge Thesaurus8 API in order to
extend the BoW. The Big Huge Thesaurus is leveraged to
extract synonyms, antonyms, related terms, similar terms
and user suggestions in order to further extend the BoW.

In the second phase, we exploit the extended BoW, in or-
der to filter the building data profiles Profile(bi), that we
created for each building bi of building type tj . By doing so,
we further prune the data by getting rid of potential noise.
Figure 1 depicts this vital role played by the influential fac-
tors during the pre-processing stage.

Weighted Model. The Weighted Model is an extension
of the Filter Model. Here, we consider the degrees of
influence of each influential factor corresponding to the
building type. First, we generate the sentic feature vectors
for all buildings in the dataset, after pruning the building
data profiles Profile(b) corresponding to each influential
factor. Then, the feature vectors are weighted with respect
to their percentage of influence (depending on the building
type), normalized, and combined.

8http://words.bighugelabs.com/
9In Table 3, dbprop:direction ∈ {north, south, east,
west, northeast, northwest, southeast, southwest}.



Table 3: DBpedia properties that are used to materialize corresponding influential factors.
Influential Factors Airports Bridges Churches Halls Skyscrapers

History Associated,

Materials Used, Size,

Level of Detail,

Surroundings

dbpedia-owl:

runwaySurface,

dbpedia-owl:

runwayLength,

dbprop:cityServed,

dbpedia-owl:

locatedInArea,

dbprop:direction 9

dbprop:architect,

dbpedia-owl:

constructionMaterial,

dbprop:material,

dbpedia-owl:

length,dbpedia-owl:

width,dbpedia-owl:

mainspan

dbprop:

architectureStyle,

dbprop:

consecrationYear,

dbprop:materials,

dbprop:domeHeightOuter,

dbprop:length, dbprop:

width, dbprop:area,

dbpedia-owl:location,

dbprop:district

dbpedia-owl:

yearOfConstruction,

dbprop:built,

dbprop:architect,

dbprop:area,

dbprop:seatingCapacity,

dbpedia-owl:location

dbprop:startDate,

dbprop:completionDate,

dbpedia-owl:architect,

dbpedia-owl:floorCount

Table 4: Coverage of DBpedia properties representing size for different architectural structures in our dataset.

Airports Bridges Churches Halls Skyscrapers

runwayLength: 95% length: 67.79% architectureStyle: 36.69% seatingCapacity: 65.67% floorCount: 91%

The resulting weighted feature vectors are then used to
train and test the model. In this way, the influential factors
identified for each building type play a crucial role in the
performance of the model itself.

As described earlier, we formulate the perception of a
building as Perception(b), and employ our ranking models
to arrive at building rankings.

3.5 Mining the Web to Correlate Influential
Factors with Relevant Structured Data

Having overcome the first hurdles of establishing the influ-
ential factors for different types of structures, and then gen-
erating rankings of structures based on their corresponding
perception, the next challenge is to consolidate and correlate
the influential factors with additional relevant information
that can be extracted from DBpedia. Our approach to de-
rive patterns in the perception of well-received structures is
depicted in the Figure 4.

We exploit structured data from the DBpedia knowledge
graph in order to correlate the influential factors with con-
crete features. Table 3 depicts some of the properties that
are extracted from the DBpedia knowledge graph in order to
correlate the influential factors corresponding to each struc-
ture with specific values. By doing so, we can analyse the
well-received patterns for architectural structures at a finer
level of granularity, i.e., in terms of tangible properties. In
order to extract relevant data from DBpedia for each struc-

Figure 4: Approach to derive patterns for well-
perceived architectural structures.

ture in our dataset, we first collect a pool of properties that
correspond to each of the influential factors as per the build-
ing type as shown in Table 3. In the next step, by traversing
the DBpedia knowledge graph leading to each structure in
our dataset, we extract corresponding values for each of the
properties identified. The properties thus extracted semi-
automatically, are limited to those available on DBpedia. In
addition, it is important to note that not all structures of
a particular type are described through the same property
set, where descriptions vary specifically with respect to their
completeness. Therefore, although all the identified values
accurately correspond to the structure, the coverage itself is
restricted to the data available on DBpedia (see Table 4).

4. EXPERIMENTAL EVALUATION
In this section, we present our dataset for experiments,

evaluate the performance of our ranking models, and discuss
our results.

4.1 Dataset
As described in Section 3.3, we create building-type spe-

cific datasets and generate a new ground truth by exploit-
ing crowdsourcing platforms like CrowdFlower and LimeSur-
vey. For our experiments, we consider the following archi-
tectural structure types: airports, bridges, churches, halls,
and skyscrapers. The dataset we thereby created, consists
of structures in the 10 biggest cities in Germany and USA.10

To ensure little variance in terms of the number of im-
ages per building, we only consider those buildings which
correspond to at least a threshold number of images in our
dataset. Table 5 depicts the number of images, favorites and
comments corresponding to each building type.

We merge the textual metadata from the Flickr images (ti-
tle, description and comments), for each image correspond-
ing to each building, b. This constitutes the building profile,
Profile(b), for each building.

4.2 Performance of Ranking Models
We evaluate our ranking models in order to observe their

performance. To this end, we create 10 splits in order to rea-
sonably gauge the performance of the model from 10 rounds
of learning (training) and consequent predictions (testing).

10
We choose these countries due to their high social media traffic.
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(a) Performance comparison of dif-
ferent ranking models for airports.
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(b) Performance comparison of dif-
ferent ranking models for bridges.
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(c) Performance comparison of dif-
ferent ranking models for churches.
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(d) Performance comparison of dif-
ferent ranking models for halls.
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(e) Performance comparison of dif-
ferent ranking models for skyscrap-
ers.
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Figure 5: Performance comparison of different ranking models for different building types.

Table 6: Performance comparison of different ranking models for halls.
Avg. NDCG@ Polarity Model FM (Avg. Favorites) FM (Avg. Comments) Enhanced Sentic Model Filter Model Weighted Model

1 0.2462 0.2366 0.2366 0.1860 0.3595 0.3544
5 0.3547 0.3372 0.3372 0.4003 0.4405 0.4799
10 0.4552 0.5308 0.5308 0.5664 0.5359 0.5971
15 0.5970 0.6219 0.6219 0.6421 0.6482 0.7073

Table 5: Type-specific dataset characteristics.
Building Type # Buildings # Images # Favorites # Comments

Airports 100 32,757 28,139 18,819
Bridges 59 12,050 19,281 25,677

Churches 139 28,683 20,857 37,036
Halls 67 20,178 11,676 14,271

Skyscrapers 178 61,538 138,899 183,051
Total 543 155,206 218,852 278,854

In order to evaluate the performance of the ranking mod-
els, we use the Normalized Discounted Cumulative Gain
(NDCG) metric [14]. NDCG is a commonly used metric
to judge the performance of an algorithm on training data
and to compare the performance with other machine-learned
ranking algorithms. Furthermore, by computing NDCG at
different levels we can gain insight into the quality of the
trained models.

The histograms in Figure 5 present the performance of
our ranking models for the different building types. We plot
NDCG values (averaged from 10 rounds of training and test-
ing) at all levels.

We find that across the different building types, the
Weighted Model exhibits better performance than other
models for almost all NDCG levels (as illustrated in Table
6 for halls). We infer that this performance gain is due to
the weighted combination of feature vectors corresponding
to a building, according to the influential factors. The cases
bearing exceptions are discussed further below.

In Figure 5(a), we observe high NDCG values at all lev-
els. This can be attributed to our observation that meta-
data from airport images on Flickr are highly rich with rel-
evant emotion-contexts. The Weighted Model outperforms
the other models at NDCG@1. It marginally outperforms
the other models at all the other levels of NDCG measured.

The Figure 5(b) presents the performance of our rank-
ing models for the building type, bridges. In case of the
bridges, we find that the Enhanced Sentic Model performs
better than the other models at NDCG@15. The Weighted
Model results in a better performance than the Frequency-
based Models and the Polarity Model. The chart in Figure
5(c), depicts the case of churches, where the Frequency-based
Model, with average number of comments as feature, outper-
forms the other models at the NDCG levels 1 and 5. The
Weighted Model performs the best at the remaining NDCG
levels measured. In case of halls, as shown in Figure 5(d) we
observe that the Weighted Model, followed by the Enhanced
Sentic Model performs better than Frequency-based models
as well as the Polarity Model. Figure 5(e), presents the per-
formance of the ranking models pertaining to skyscrapers.

An important revelation is that simple models based on
reliable features like the normalized number of favorites and
comments can perform fairly well. However, we need sophis-
ticated models like the Weighted Model in order to attain a
higher and more stable performance across different types
of structures.

We observe a clear variance in the performance of the
models across the different types of architectural structures,
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Figure 6: Influence of Size (total length of runways)
in the perception of airports.

as depicted by the error bars representing the standard error.
We attribute these differences to the varying importance
of different emotions (which are used as features in train-
ing the models) with respect to different structure types.
In addition, it is assumed that the architectural relevance
of comments vary heavily among building types. For in-
stance, while in case of churches, Flickr images and com-
ments might likely be about the building itself, in case of
bridges or airports, a large proportion of comments (and
extracted sentiments) might indeed relate to other aspects.
While comments and extracted sentiments might refer to
aspects independent of the depicted building (for instance,
the photographic quality or an event taking place at the de-
picted venue), additional pre-processing is required in order
to better select social media of relevance for the task at hand.
The crowdsourced ground truth for different architectural
structures and the detailed performance of our automated
ranking models are additionally published for reference.11

5. CONSOLIDATION OF PATTERNS:
PROOF-OF-CONCEPT

By correlating the influential factors to specific DBpedia
properties, we can identify patterns for well-perceived ar-
chitectural structures. In order to demonstrate how such
observed patterns for architectural structures can be consol-
idated, we choose the influential factors, Size of the struc-
ture and Level of Detail. Although this approach can be
directly extended to other influential factors and across dif-
ferent kinds of architectural structures, due to the limited
space we restrict ourselves to showcasing these influential
factors.

Airport ‘size’ is traditionally judged either by the num-
ber of operations (takeoffs and landings, runways) or the
passenger traffic (number of passengers who fly in or out
of the facility)12. Characteristics of major airports include
two or more long runways capable of handling the larger jet
airliners. The length of the runways are a fair indicator of
the size of an airport. We observe that for each airport, we
can extract indicators of size using the DBpedia property
dbpedia-owl:runwayLength. We extract the length of the
runways for each airport in our dataset in order to analyse
and determine the well-received pattern for airports with
respect to their size. The graph in Figure 6 shows how

11http://data-observatory.org/building-perception/
12

http://virtualskies.arc.nasa.gov/airport_design/3.html

the popularity, i.e., the positive perception (as a factor of
rank) of airports varies with their size. We observe that
airports possessing runways with a length between 7,000-
12,000 metres are generally well-perceived by people (higher
Perception(b)).

Similarly, in case of bridges the influential factor ‘size’ can
be represented using the DBpedia properties dbpedia-owl:

length, dbpedia-owl:width and dbpedia-owl:mainspan,
for halls we can use the DBpedia properties dbprop:

area and dbprop:seatingCapacity, while we can use
dbpedia-owl:floorCount, and dbprop:height to consol-
idate the well-perceived patterns for Skyscrapers. We
thereby extract corresponding property values for each
structure in our dataset using the DBpedia knowledge graph.

Figure 7(a) shows how the popularity, i.e. the positive per-
ception of bridges varies with their size (in terms of length
of the bridge). It is interesting to note that long bridges are
not necessarily perceived well. We note that some bridges
with length less than 1000 metres are perceived very well by
people (Perception(bi) > 0.5).

The plot in Figure 7(b) shows that skyscrapers having 25-
65 floors form the crux of the most well-perceived skyscrap-
ers. We observe that halls with a seating capacity between
1000-4000 people are well-perceived with the positive per-
ception between 0.1 and 1.

For churches, we demonstrate the consolidation of pat-
terns with respect to the influential factor Level of Detail.
The dbprop:architectureStyle is a good measure of the
detail in the structure. We thereby correlate the influen-
tial factor Level of Detail with the architecture styles using
dbprop:architectureStyle in the DBpedia graph. By do-
ing so, the churches in our dataset are mapped to 15 different
architectural styles. The 3 most popular styles are found to
be ‘Gothic Revival’, ‘Romanesque’, and ‘Gothic’.

Caveats and Limitations. In this paper, we have
shown how architectural patterns can be mined by corre-
lating structure features with properties from DBpedia. It
is very important to note that the architectural patterns
observed and presented here are based on merely a single
dimension (i.e., size or level of detail). We have already
shown that perception of an architectural structure involves
multiple factors. In order to establish more concrete, mean-
ingful and thorough architectural patterns, we will consider
the remaining influential factors in a similar manner for each
type of structure.

We have taken explicit precautions to ensure the relia-
bility of using crowdsourcing to rank buildings based on
their appearance and aesthetic appeal. We manifest this
through different influential factors. As described earlier in
Section 3.3, we take measures to counter possible biases in
the responses recieved from crowd workers. However, given
that some architectural structures may have binding cul-
tural relevance to particular workers, and without detailed
information regarding the backgrounds of various workers,
we acknowledge that it may be infeasible to account for such
biases to an accurate extent.

While we have also taken steps to ensure that the im-
ages representing the buildings are the central subjects and
devoid of additional effects, it was beyond the scope of our
work to account for biases due to other photometric features
such as hue, brightness, and so forth.



0.0

0.2

0.4

0.6

0.8

1.0

 0  1000  2000  3000  4000  5000  6000

P
o
si

ti
v
e
 P

e
rc

e
p
ti

o
n

Size of the Bridge (length in metres)

(a) Bridge length (m).

0.0

0.2

0.4

0.6

0.8

1.0

 0  20  40  60  80  100  120

P
o
si

ti
v
e
 P

e
rc

e
p
ti

o
n

Size of the Skyscraper (Number of Floors)

(b) Skyscraper height (# of floors).

0.0

0.2

0.4

0.6

0.8

1.0

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

P
o
si

ti
v
e
 P

e
rc

e
p
ti

o
n

Size of the Hall (Capacity)

(c) Hall capacity (persons).

Figure 7: Influence of size in the perception of architectural structures.

6. RELATED WORK
Prior research works have established the fact that ar-

chitectural structures play an important role in influencing
the built environment and consequently the well-being of a
community. Leyden et al. show that the design and con-
ditions of cities are strongly associated with the happiness
of residents in 10 different urban areas [13]. Lathia et al.
reflect on community well-being from urban mobility pat-
terns [12]. Bill Hillier introduced space syntax, a science-
based, human-focused approach that investigates relation-
ships between spatial layout and a range of social, economic
and environmental phenomena [7]. These phenomena in-
clude patterns of movement, awareness and interaction; den-
sity, land use and land value; urban growth and societal
differentiation; safety and crime distribution. In contrast to
these works, in our paper we present a quantitative approach
towards gauging the perception of architectural structures.

There has been a large amount of research concerning em-
ploying the wisdom of the crowds, to solve tasks which re-
quire a large amount of human input or computation. Such
works have also spanned across various domains. The au-
thors of [18] suggest making crowdsourcing an integral part
of the workflow for Galleries, Libraries, Archives and Mu-
seums (GLAMs). Quercia et al. [23, 24] crowdsource per-
ceptions of beauty, quiet and happiness across the city of
London by using Google Street View images and make use
of gamification in order to build a recognizability map of the
city. Similarly in our work, we rely on experts to identify in-
fluential factors that affect building perception, and employ
crowdsourcing to build our ground truth.

There has been a fair amount of research work in the do-
main of sentiment extraction and analysis from web data
sources. For example, Kennedy et al. show that Flickr tags
and other metadata can be used to enhance and improve our
understanding of the world [9]. The authors of [27] study the
connection between sentiment of Flickr images expressed in
the corresponding metadata and their visual content. Com-
plementing the prior works with regards to exploiting sen-
timents expressed by people over Social Media in varying
domains, in our work we focus on leveraging these signals to
improve perception-based ranking models for architectural
structures and their effect on the surrounding environment.

In the context of ranking architectural structures; over the
last decade and more, there has been a considerable amount
of research done with an aim towards determining the effi-
ciency or sustainability of a building, and comparing build-
ings on criteria pertaining to these features [2,3,26]. Roulet
et al designed a multi-criteria rating methodology for build-
ings with the purpose of ranking or rating office buildings

and retrofit scenarios of the same building according to an
extended list of parameters [25]. Similar works have focused
on the Indoor Environment Quality of different buildings as
a means of comparison and/or ranking buildings. In order
to design appropriate evaluation and rating methodologies
for buildings, we need to take into consideration a number of
characteristics. In general, many parameters and criteria are
considered to access the buildings by each of these method-
ologies. The criteria may include visual and acoustic com-
fort, cost and energy efficiency, impact on the environment,
perceived health and so on. Energy efficiency however, is
considered to be the main factor in almost all recent building
rating schemes [11]. Apart from energy efficiency and the
other characteristics already mentioned, buildings are also
rated and compared based on their safety provisions. Most
often this has to do with fire-safety measures [10, 17, 30].
These works however, only consider the functional aspects of
architectural structures and fall short with respect to gaug-
ing the aesthetic elements. Finally, in this work we build
upon our previous work regarding extracting architectural
patterns from Web data [5].

7. CONCLUSIONS AND FUTURE WORK
One of our main contributions is the pipeline we designed

that can be tailored to specific architectural structure types
in order to allow the measurement of public perception of
structures. Alongside this, the influential factors and the
ground truths established for different types of architectural
structures are key contributions of our work. An interactive
visualization supports further deliberation.13

Through our experiments, we find that in the task of rank-
ing structures based on their associated perception extracted
from Web data, a big challenge is to ensure the relevance of
the extracted text to the structure-type that we are inter-
ested in. We are led to believe that pruning relevant data to
closely fit the corresponding structure types will have a posi-
tive impact on ranking performance. In this respect, filtering
mechanisms which consider the most fine-grained type possi-
ble (for instance, airport instead of building), seem the most
promising. This is due to the insight that different types are
usually influenced by different factors, as identified through
our crowdsourcing activities. To this end, influential fac-
tors can provide a means to tailoring NLP-based filtering
methods.

A broad range of architectural insights can be facilitated
as a result of rankings thus generated. We demonstrate this
by correlating with building characteristics extracted from
DBpedia. Our models and methods can help in analysing

13http://bit.do/building-perception-airports/



the evolution of the popularity of a building. Apart from ar-
chitects, builders, magazines, News Channels, building cor-
porations or other parties interested in building rankings,
can greatly benefit from this approach; by eliminating a
large amount of human costs, otherwise required to arrive
at such rankings. In addition, our approach to crowdsource
the influential factors further reduces the manual labour and
need for cumbersome human intervention. In many cases,
influential factors with respect to different structure types
are not known apriori.

In the imminent future, one direction for investigations is
the correlation of building with additional structured data,
as prototypically implemented in Section 3.5. With respect
to mining architectural patterns, we will extend our work
to cover a rigorous analysis that can help us mine patterns
with multiple facets. For example, to mine patterns like
‘skyscrapers with x size, y uniqueness, and z materials used
are best perceived’.
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