
Automatic Keyword Extraction

for Database Search

First examiner
Prof. Dr. techn. Dipl.-Ing. Wolfgang Nejdl

Second examiner
Prof. Dr. Heribert Vollmer

Supervisor
MSc. Dipl.-Inf. Elena Demidova

Erklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit
selbständig und ohne fremde Hilfe verfasst und keine anderen als
die in der Arbeit angegebenen Quellen und Hilfsmittel verwendet
habe. Die Arbeit hat in gleicher oder ähnlicher Form noch keinem

anderen Prüfungsamt vorgelegen.

Hannover, den 27 Februar 2009

. .
(Iryna Oelze)

Eingegangen am (Datum/Stempel): ______________________

Abstract

Users often try to assimilate information on a topic of interest from multiple

information sources. Sometimes user’s information need might be expressed in terms of

an available relevant document, rather than a query. This document can result from a

web search, but also arrive at user’s desktop directly e.g. as an e-mail attachment.

Recently a lot of work was performed towards enabling keyword search in

databases. However, database search engines are mostly adapted to the queries

manually created by users. In case user’s information need is expressed in terms of a

document, we need to create algorithms that automatically extract keyword queries

from the available data and map them to the database content.

In this work we analyse influence of the selected document and database statistics

on effective keyword extraction and disambiguation in order to retrieve relevant results

from a database.

We implemented our keyword extraction and disambiguation algorithms on the

top of the Okkam entity repository. We evaluated our approach using a real-world

dataset containing Wikipedia documents and IMDB data as well as a set of user-defined

keyword queries from a Web search engine log.

3

Table of contents

1 Introduction 5
 1.1 Motivation...5
 1.2 Outline..7

2 Problem Analysis 8

 2.1 Keyword Extraction...8
 2.1.1 Existing Approaches..8

 2.2 Keyword Search...11
 2.2.1 Keyword Search Approaches..11
 2.2.2 Entity Repository..12

3 Conceptual Design 14

 3.1 Automatic Keyword Extraction..14
 3.2 Keyword Request Processing..16

 3.2.1 Attribute Ranking Factors..16
 3.2.2 Query Score..19
 3.2.3 Query Ranking Algorithm..20

 4 Software Used 22

5 Datasets Used 23

 5.1 Semi-Structured Dataset...23
5.2 Document Dataset..25

6 Evaluation 26

 6.1 Precision...26
 6.2 Effectiveness...28
 6.3 Efficiency...30

 6.4 Relevance...33

7 Conclusion 36

8 References 38

4

1 Introduction

The first chapter begins with the clarification of the motivation for the bachelor

thesis, this part will illustrate the actuality and aim of the Bachelor thesis. Finally, the

section 1.2 gives a brief overview of the following chapters.

1.1 Motivation

Information is the most powerful weapon in the modern society. Every day we are

overflowed with a huge amount of data in form of electronic newspaper articles, e-

mails, webpages and search results. Often, information we receive is incomplete, such

that further search activities are required to enable correct interpretation and usage of

this information. For instance, in an enterprise, given a customer request sent via e-mail,

search activities of an employee in the customer support department can include

lookups of the information on the related products in the intranet databases, as well as

Web- and desktop search.

Keyword search is a usable and powerful tool which enables efficient scanning of

large document collections. It frees the user from learning the syntax of a structured

query language, like e.g. Boolean query, SQL or XQuery and understanding their

complex semantics. Recently, keyword search found application in the databases, where

it enables data retrieval in case the schema is unknown to the user, going beyond pre-

defined forms and applications [1, 2, 5, 9, 11, 12, 23, 24, 29]. On the other hand,

usability comes at the price of expressiveness. In order to correctly answer a keyword

request, database system need to identify intention behind the keywords; this introduces

additional query processing cost at the database side.

In case an information need of the user is represented through a document, rather

than a manually created keyword request, keyword annotations of this document (as

well as other available metadata) can be used to build a keyword query. For instance,

scientific articles are often annotated with keywords. Also Web documents, especially

multimedia resources, can be already associated with tags. In an electronic magazine,

keywords give a clue about the main idea of an article, in a book they quickly lead the

reader to the whereabouts of the information sought. On the web, tag annotations help

5

to find multimedia and other resources. Unfortunately, a large portion of documents on

the Web still does not have any keywords assigned. Moreover, creation of manual

annotations is time-consuming, such that automatic ways of keyword extraction from

the documents are required. In the following we illustrate the necessity of keyword

extraction with a short scenario.

A technician Alice supplies customers of an internet hardware sales enterprise

with expert information regarding the installation and usage of the products. Every day

she receives a lot of e-mails which contain description of the products and usage

problems at different level of detail. In order to answer the request, she needs to identify

product specifications such as a model, producer, production country, etc. and then

search in a database for further product details. In order to answer the request, she first

reads the message, trying to identify useful keywords, then retrieves necessary

information from the enterprise database using the keyword search interface. However,

the manual assignment of high quality keywords is time-consuming. Automatic

keyword extraction would enable Alice to immediately identify related information in

the enterprise database and essentially reduce response time to the customer.

Many existing algorithms and systems aimed to perform automatic keywords

extraction have been proposed [4, 13, 15, 16, 21, 23, 26, 28]. Currently existing

solutions for automatic keyword extraction require either domain specific knowledge

[13, 21, 23] or training examples [23, 26]. These approaches require human interaction

and need to be adapted to the specific application domain. In case when the documents

representing user information need are obtained from the Web search or arrive to the

user desktop via e-mail, this information is not available.

In this thesis we develop an approach to identify information related to a text

document inside a database. We analyse database and document statistics, which are

useful for the keyword extraction and develop approach of keyword disambiguation

inside the database. We compare performance of the system which uses automatically

extracted keywords with the one of user generated queries. We evaluate our approach

using entity repository containing data extracted from the Internet Movie Database [14]

and subset of Wikipedia pages [25] related to the movie domain.

6

1.2 Outline

The outline of the thesis is organised as follows:

Chapter 2 analyses the problem area by presenting the existing approaches in the

keyword extraction and database search domains. This gives an overview of the related

works and explains the choice of our conceptual design.

Chapter 3 specifies the conceptual design and exploited heuristics. The detailed

description of the used statistical measures for automatical keyword extraction is

provided in the section 3.1. The following section introduces the notion of a structured

query and presents the keyword- and attribute-dependent ranking factors for repository

request.

Chapter 4 particularises the software used for the implementation.

Chapter 5 illustrates the datasets used for experimental evaluation.

Chapter 6 demonstrates the evaluation results from processing different types of

database requests.

Chapter 7 gives a brief summary of the work done and presents some future

research directions.

Chapter 8 lists the the related works.

7

2 Problem Analysis

The focus of our work is in enabling an ordinary user search through the data in

the repository, having only a text document. To make this possible, we need to separate

this process in two phases: first we need to extract the keywords that describe the docu-

ment, and then effectively process the keyword query. That’s why we divided this sec-

tion into two parts: the the section 2.1 gives the brief insights into the issue of automat-

ic keyword extraction, keyword search problem will be discussed in the section 2.2.

Thereby the existing approaches will be presented in order to familiarize the user with

the related works and explain the choice of our conceptual design.

2.1 Keyword Extraction

Automatic keyword extraction is the task to identify a small set of words, key

phrases, keywords, or key segments from a document that can describe the meaning of

the document [13]. It should be done systematically and with either minimal or no hu-

man intervention, depending on the model. The goal of automatic extraction is to apply

the power and speed of computation to the problems of access and discoverability,

adding value to information organization and retrieval without the significant costs and

drawbacks associated with human indexers [7].

2.1.1 Existing Approaches

 The manual extraction of keywords is slow, expensive and bristling with mis-

takes. Therefore, most algorithms and systems to help people perform automatic

keyword extraction have been proposed.

 Existing methods can be divided into four categories: simple statistics,

linguistics, machine learning and mixed approaches [7, 28].

 Simple Statistics Approaches

These methods are simple, have limited requirements and don’t need the training

data. They tend to focus on non-linguistic features of the text such as term frequency,

inverse document frequency, and position of a keyword. The statistics information of

the words can be used to identify the keywords in the document. Cohen uses N-Gram

8

statistical information to automatic index the document [4]. Other statistics methods in-

clude word frequency, TF*IDF, word co-occurrences [16], etc. The benefits of purely

statistical methods are their ease of use and the fact that they do generally produce good

results.

 Linguistics Approaches

These approaches use the linguistic features of the words, sentences and docu-

ment. Methods which pay attention to linguistic features such as part-of-speech, syn-

tactic structure and semantic qualities tend to add value, functioning sometimes as fil-

ters for bad keywords.

Plas et al. [21] use for evaluation two lexical resources: the EDR electronic dic-

tionary, and Princeton University's freely available WordNet. Both provide well-popu-

lated lexicons including semantic relationships and linking, such as IS-A and PART-OF

relations and concept polysemy. During automatic keyword extraction from multiple-

party dialogue episodes, the advantages of using the lexical resources are compared to a

pure statistical method and relative frequency ratio.

Hulth [13] examines a few different methods of incorporating linguistics into

keyword extraction. Terms are vetted as keywords based on three features: document

frequency (TF), collection frequency (IDF), relative position of its first occurrence in a

document and the term's part of speech tag. The results indicate that the use of linguistic

features signify the remarkable improvement of the automatic keyword extraction.

In fact, some of the linguistic methods are mixed methods, combining some lin-

guistic methods with common statistical measures such as term frequency and inverse

document frequency.

 Machine Learning Approaches

Keyword extraction can be seen as supervised learning from the examples. The

machine learning mechanism works as follows. First a set of training documents is

provided to the system, each of which has a range of human-chosen keywords as well.

Then the gained knowledge is applied to find keywords from new documents.

The Keyphrase Extraction Algorithm (KEA) [26] uses the machine learning tech-

niques and naive Bayes formula for domain-based extraction of technical keyphrases.

Suzuki et al. [23] use spoken language processing techniques to extract keywords

9

from radio news, using an encyclopedia and newspaper articles as a guide for relevance.

The process is separated into two phases: term-weighting and keyword extraction. First,

a set of feature vectors is generated from different encyclopedia domains. The same

procedure is then performed on a corpus of newspaper articles. The encyclopedia

vectors are compared with the article vectors using a similarity calculation so as to

separate the latter into different domains, after which they are sorted, producing the

final set of feature vectors.

In the second phrase, keyword extraction, a segment is analysed such that the

most relevant domain is selected for it using the pre-existing feature vectors. Phoneme

recognition software is employed to do the analysis, looking for the best fit between a

segment's vectors and that of one of the encyclopedia domains. When the best fitting

domain is chosen, its keywords are then assigned to the radio news segment.

 Mixed Approaches

Other approaches about keyword extraction mainly combine the methods men-

tioned above or use some heuristic knowledge in the task of keyword extraction, such as

the position, length, layout feature of the words, html tags around of the words, etc

[15].

The overview of the related works reveals that the automatic keyword extraction

is faster and less expensive than human intervention. Moreover the authors claim that it

achieves the precision of the human indexers. However, currently existing solutions for

automatic keyword extraction require either training examples or domain specific

knowledge. Our approach, on the contrary, doesn’t have this additional information. We

apply the statistical measures to the automatical keyword extraction as they are domain-

independent and have limited requirements. Moreover, in our work we want to analyse

how the database context can be exploited in order to automatically extract representat-

ive keywords from a document.

10

2.2 Keyword Search
Keyword search enables user to process his query without any or only little know-

ledge of the database schema.

2.2.1 Keyword Search Approaches

Many approaches try to satisfy the need for efficient information retrieval over struc-

tured and semi-structured data. BANKS [2] models the database as a directed graph

where the tuples are the weighted nodes and a foreign-key relationships between the

tuples are the directed edges. An answer to a query is then a subgraph connecting nodes

matching the keywords. Similarly, Hristidis et al. [12] view a XML database as a graph

of segments, where the nodes correspond to labelled XML elements. The aim of this

method is to find connections between them that contain all the query keywords. DBX-

plorer [1] creates auxiliary tables during a preprocessing phase and DISCOVER [11]

generates and evaluates networks of tuples. XRANK[9] proposes a PageRank-style

ranking for the XML result trees, which combines the scores of the individual nodes of

the result tree.

As a potential result, all these techniques return a list of tuple trees that contain all

the keywords of the query. The main difference between them lies in the ranking func-

tion for ordering the results. In our case, for a query consisting of extracted keywords

we will not always find an exact match in a database, so we are also interested in partial

correlation.

Several systems have been also proposed, that implicitly or explicitly integrate

structure-free components into structured queries, and allow a user to specify queries in

a loose fashion on XML data. Meaningful Summary Query (MSQ) [5] permits users to

write complex queries using only a summary of the schema. But the complexity of writ-

ing an MSQ query is comparable to XQuery and far from the simplicity of keyword

queries. Florescu et al. [6] extend an existing XML query language in order to support

keyword search.

With these methods it is easier for a user to formulate a query. But our user, that

have no knowledge of the repository schema, shouldn’t care about the learning of query

language.

11

Furthermore, instead of first using structural information of the database schema and

then ranking answers, new approaches have been proposed, that translate the keyword

query into the correct structured query. SQAK[24] generates the network of ranked

structured queries. The results are then obtained by exploiting the fact that keyword

query can be answered with just the few most relevant high-scored structured queries.

SUITS[29] proposes a framework for efficient constructing relational database query

from keywords. The process is split into two phases. During the first pre-processing

phase the templates (information about the primary-and foreign-key relations between

the tupels) are created. In the second phase SUITS checks for all occurrences of the

query terms in database tables and attributes. Then it combines the gained information

with the pre-computed query templates and transforms a user’s keyword query into

structured queries. In the last step the system ranks the structured queries according to

their likelihood of matching the user’s intent and returns the results from top-k queries.

In our work we use the idea of constructing a structured query with well-defined

semantics, but apply it to another kind of repository, represented in the following sec-

tion. As it differs from a relational database, we introduce several keyword- and attrib-

ute-dependent ranking factors, described in detail in the chapter 3.

2.2.2 Entity Repository
. The aim of the Okkam project [19] is to provide a basic set of entity name sys-

tem (ENS) functionality, it is designed to enable a web-scale system for assigning and

managing unique, global identifiers to entities in the WWW[20]. A main aim of an ENS

is to provide means for searching for the identifier of an entity. The Figure 2.1 [3]

shows the implementation of a single node providing entity identifiers across the system

boundaries. While processing a query, the system has to decide whether an entity is

already in repository and return a unique entity identifier or whether a new entity should

be created.

12

Figure 2.1 The ENS functionality of OKKAM

The Okkam entity repository is a large-scale structured directory, where entity IDs

along with some small amount of descriptive semi-structured information for each

entity are stored. This description is represented as key-value pairs encoded in XML.

The data in repository is partly de-normalized, i.e. an entity can contain some key-value

pairs of the referred entities. All entities in the repository are indexed using an inverted

index, which includes attribute specific statistics.

The purpose of storing this information is to use it for discriminating among entit-

ies.

13

TF term ∗ log 1 N
DF term

3 Conceptual Design

This chapter describes in detail the techniques used for automatic keyword

extraction in the section 3.1 and our approach for keyword search in the section 3.2.

3.1 Automatic Keyword Extraction
The task of automatic keyword extraction is to identify a set of words,

representative for a document. To achieve this we use a simple statistical approach.

Thereby, as we intend to exploit the properties of a document and of a repository, we

need to find the comparable measures.

One of the simple weighting is TF*IDF. The TF part intends to give a higher

score to a document that has more occurrences of a term, while the IDF part is to

penalize words that are popular in the whole collection. The further factors such as

position of the word in a document or the length of a document are not comparable, as

the database entries are much more shorter.

Due to the type of extraction, we divide the automatic keyword extraction into 3

groups:

• Text – Based

• Database – Based

• Text – and Database – Based

Text – Based Extraction
 The keyword extraction is conducted exploiting the TF*IDF weight of the term.

It is calculated according to the formula:

 TF * IDF (term) =

where TF(term) is the frequency of a term in the given document, N is the total number

of documents in the collection, DF(term) is number of documents, that contain the term.

Database – Based Extraction
In this type of extraction we use the database specific statistical information.

As to the entity representation considered in this work, its attribute values tend to

14

1∗ log 1 DF attribute
DF term , attribute

∑attributes TF∗IDF term , attribute

n

contain in average about 2 words, so we can assume that the tf score equals 1. As term

occurrences are usually distributed sparsely in a database, there can be more than one

attribute it appears in. We build the average TF*IDF score over all the attributes, that

contain the given term.

 avg (TF*IDF(term,attribute)) =

where n is the number of attributes that contain the given term and attribute-specific

TF*IDF score of a term is computed as follows:

 TF * IDF (term, attribute) =

thereby DF(attribute) is number of entities containing the given attribute and

DF(term,attribute) is number of entities where the given term appears in the given

attribute.

Text – and Database – Based Extraction
A combined TF*IDF score is then a product of document- and database-specific

scores : TF*IDF (term) * avg(TF*IDF(term,attribute)).

15

3.2 Keyword Request Processing
In order to construct the structured keyword request for an entity (i.e. individual,

instance, “thing”), we first need to identify the attributes in which each keyword

appears. This is performed in one step using an inverted index available in the entity

repository. Then the score is computed for every subquery q, which is a combination of

an attribute a and a keyword k so that q = “k occurs in a”. In our work we evaluate

several attribute ranking approaches. In the next step, possible structured queries, each

being a conjunction of subqueries, are constructed. Finally, these queries are ranked

using query ranking criteria discussed in the following in Section 3.2.3 and executed

against the entity repository.

3.2.1 Attribute Ranking Factors

The Okkam entity is represented by a set of (attributeName = attributeValue)

pairs. As our keyword request is a bundle of terms without the specification of attribute

names, our first task is an identification of the attributes where each keyword appears in

the repository. Then a specific score is computed for each attribute/keyword pair.

The three intuitive and desirable constraints that any reasonable retrieval formula

should satisfy are: term frequency tf, inverse term frequency idf and document length

normalization dl. Applied to our attribute-specific approach, the tf heuristic intends to

assign a higher score to an attribute of a single entity that has more occurrences of a

query term. By intuition, in a collection, the more entities a term appears in a certain at-

tribute, the worse discriminator it is, and it should be assigned a smaller idf weight. The

attribute length normalization is to avoid favouring long attributes, as long attributes

generally have more chances to match a query term simply because they contain more

words.

As to the entity representation considered in this work, its attribute values tend to

contain in average about 2 words, so that the tf and dl score will have no effect, as the

term usually appears only once pro attribute value and all attributes are approximately

of the same length.

Because of this as a basis for our score computing we use only the attribute-spe-

cific idf weight of a keyword, which is computed as follows :

16

log 1 DF attribute
DF keyword , a ttribute

DF keyword , attribute
∑attributesDF keyword , attribute

Attribute specific IDF score (IDF):

 IDF (keyword, attribute) =

where DF(attribute) is number of entities containing the given attribute and

DF(keyword, attribute) is number of entities where the given keyword appears in the

given attribute.

Attribute specific DF score (DF):
Opposite to idf, we propose the method that is based on the probability of

keyword match in an attribute. The core idea of the df score is that probability of the

match increases with increasing spreading of the keyword over the attributes. If the

keyword appears in the given attribute more frequently than in other attributes than this

attribute/keyword combination becomes the higher score than the others. The spread

score is calculated according to the formula:

 DF (keyword, attribute) =

where DF(keyword, attribute) is number of documents, where the keyword

appears in the given attribute. The sum of the df scores of different attributes is 1.

The idf and df scores are keyword-dependent, but what about the attribute itself?

How do attributes influence the quality of keyword search, is it helpful to exploit them

in our retrieval?

In this thesis we represent two attribute-dependent ranking factors: collection

attribute frequency, which reflects the importance of an attribute in the collection and

average document attribute frequency, that expresses the cardinality of an attribute in a

document.

Collection attribute frequency (CAF):
By intuition, the more documents have the attribute, the higher is the general

17

DF attribute
N

1

log 1
∑documents DAF attribute

DF attribute

importance of this attribute. The collection attribute frequency is computed as follows:

 CAF(attribute) =

where DF(attribute) is number of documents containing the given attribute and N is the

total number of documents in the collection.

Average document attribute frequency (avg(DAF)):

In the context of this thesis, the cardinality of the attribute describes the relation-

ship of an attribute with its related values in a single entity. The possible values of con-

nectivity are "one-to-one" or "one-to-many".

A one-to-one (1:1) relationship is when an entity attribute has only one value. For

example, a movie entity has one title or single production year.

A one-to-many (1:N) relationship exists in a case when an entity has pairs attrib-

utei = valuei, attributej = valuej, so that attributei = attributej and valuei ≠ valuej. An

example of a 1:N relationships is actors or different shooting spots.

The 1:1 relations are more descriptive than 1:N, that’s why the smaller the

number of attribute values per document is, the higher is the relevance of this attribute.

The avg(DAF) is calculated according to the formula :

 avg(DAF(attribute)) =

where DAF(attribute) is the number of times an entity contains the given attribute and

DF(attribute) is number of entities containing the given attribute.

 Attribute Rank (ARank):
 The total global rank of the attribute is then a combination of keyword

independent attribute ranking factors.

ARank (attribute) = CAF(attribute) * avg(DAF(attribute))

18

 3.2.2 Query Score

After obtaining the attribute-specific score for each attribute/keyword combina-

tion, our next step lies in constructing the structured query for further request pro-

cessing. The key idea is that a structured query is composed from subqueries using the

and-semantics, corresponding to the “and” operator of the boolean model.

Let q1 ,..., qn be a set of subqueries that represent the attribute/keyword combina-

tions, a structured query Q is then defined as the conjunction of the subqueries

q1◦ ...◦ qm , m ≤ n.

The possible conjunctions of subqueries q1, q2, q3 are presented in a Figure 3.1.

Figure 3.1 Construction of structured query

The relevance of the whole query is represented as a sum of the scores of all sub-

queries.

 Score (query) = ∑ Score(subquery q)

where Score(subquery q) can be defined using a combination of the above attribute

19

ranking factors. Typical combinations are: IDF, DF, IDF*avg(DAF), IDF*CAF,

ARank, IDF*ARank.

3.2.3 Query Ranking Algorithm

The aim of the query ranking procedure is to identify the structured query which

delivers possibly precise results to the keyword entity requests. But the number of

possible structured queries increases exponentially with the growing number of

keywords and attributes in the repository. As for instance Figure 3.1 shows, we

become 7 structured queries from only 3 subqueries. For that reason the construction

and processing of all intended entity requests will be a very expensive and time-

consuming operation.

The first native solution is to construct all possible queries, rank them before

execution and process only the high-scored conjunctions. But typically, the number of

queries is too high, such that it is infeasible to build and score all possible combinations.

Therefore we developed the following optimization algorithm to iteratively calculate the

highly scored requests.

Given a a sorted subquery list { qn1 ... qnk } for all occurrences of a keyword n in

different attributes, we build a set S = {{ q11 ... q1k }, ... , { qn1 ... qnk }} for all keywords

from 1 to n.

Our task is to limit the number of queries to be constructed, as we are only

interested in a few top-k highly scored queries. For this purpose we introduce two

bounds for the score of the query Qtop-k. The upper bound corresponds to the score of

the query Qk, that consists of the subqueries q at k posision. The lower bound is the

sum of the scores of elements at the (k + 1)-th position in each list. For a query Qk is

true:

score(Qk-1) > score (Qk) > score(Qk+1)

The intermediate scores are obtained due to the fact that some of highly scored

elements at k position can build a number of highly scored combinations with the other

lower scored elements in the lists. Due to this fact, a list of queries is constructed with

the participation of the subqueries at the position k. The query Q is called top-k query

20

when its score satisfies the condition:

score(Qk) ≥ score (Qtop-k) > score(Qk+1)

In the Figure 3.2 we present an example for constructing the top-1 queries. The

list of constructed queries consists of 40 queries, but only 11 of them satisfy the score

bounds and are considered as top-1 queries. With the native solution there would be 70

possible queries.

Figure 3.2 An Example for Top-1 Queries.

The requests with the highest scores are then executed till we obtain the intended

minimum number of results. Algorithmically this method gives an advantage, especially

if the length of the lists (number of attributes) is big.

21

4 Software Used

We implemented our keyword extraction and disambiguation algorithms on the

top of the Okkam entity repository.

The entity IDs along with some small amount of descriptive semi-structured

information for each entity are stored using the hbase (version 0.1.2) [10] - the Hadoop

database that can manage very large tables. The description is represented as key-value

pairs encoded in XML. All entities in the repository are indexed using an inverted

index, which includes attribute specific statistics. This capacity is provided by lucene

(version 2.3.2).

 Lucene [8] is a high-performance, scalable Information Retrieval library. It is a

mature, free, open-source project implemented in java. Lucene can index and make

searchable any data that can be converted to text format.

The algorithms were implemented using JDK 1.6, all experiments were conducted

on the Linux server of the L3S Research Center.

22

Attribute key/value pair

5 Datasets Used

This chapter describes the datasets that we use for experimental evaluation.

5.1 Semi-Structured Dataset
In our work we use the IMDB [14] dataset that consists of 2.347.778 entities,

describing persons and 1.263.756 movie entities. Each entity has a unique identifier,

called okkamid (oid) and a short description. This description of the entity is

represented as key-value pairs encoded in XML. The data in repository is partly de-

normalized, i.e. an entity can contain some key-value pairs of the referred entities. All

entities are indexed using an inverted index, which includes attribute specific statistics.

In total there are 46 different attributes.

Below we present examples of entities, describing person and movie:

Person Entity
<?xml version='1.0' encoding='UTF-8'?>
<entity xmlns='http://www.okkam.org/schemas/entitySchema.xsd'>
<oid>http://www.okkam.org/entity/okec9035c7-6cf0-491a-86ac-0aba5fc58d28</oid>
<profile>
<semanticType> movie </semanticType>

<attributes>
 <attribute>

 <name> name </name>
 <value> Aaltonen, Remu </value>

</attribute>
<attribute>

 <name> birth notes </name>
 <value> Helsinki, Finland </value>

</attribute>
<attribute>

 <name> birth name </name>
 <value> Aaltonen, Henry Olavi </value>

</attribute>
<attribute>

 <name> birth date </name>
 <value> 10 January 1948 </value>

</attribute>
</attributes>

</profile>
</entity>

23

1:N Relationship

Decomposition

Movie Entity
<?xml version='1.0' encoding='UTF-8'?>
<entity xmlns='http://www.okkam.org/schemas/entitySchema.xsd'>
<oid> http://www.okkam.org/entity/ok6c9ea0ff-838f-4c98-bdad-0e458843546c </oid>
<profile>
<semanticType> movie </semanticType>

<attributes>
<attribute>

<name> title </name>
<value> $5000 Reward, Dead or Alive </value>

</attribute>
<attribute>

<name> kind </name>
<value> movie </value>

</attribute>
<attribute>

<name> production_year </name>
<value> 1911 </value>

</attribute>
<attribute>

<name> genres </name>
<value> Short </value>

</attribute>
<attribute>

<name> genres </name>
<value> Western </value>

</attribute>
<attribute>

<name> release dates </name>
<value> USA:8 June 1911 </value>

</attribute>
<attribute>

<name> actor </name>
<value> Kerrigan, J. Warren </value>
<veid> http://www.okkam.org/entity/ok61fd1f8d-64c3-4c20-b4c9-1cbf5f4842a8 </veid>

</attribute>
<attribute>

<name> actress </name>
<value> Bush, Pauline </value>
<veid>http://www.okkam.org/entity/ok0b509300-407b-4ba8-849a-2ba5314619e6</veid>

</attribute>
<attribute>

<name> director </name>
<value> Dwan, Allan </value>
<veid> http://www.okkam.org/entity/ok45276a61-85cd-43d8-9a68-e920bc3f670d</veid>

</attribute>
</attributes>

</profile>
</entity>

24

http://www.okkam.org/entity/ok6c9ea0ff-838f-4c98-bdad-0e458843546c
http://www.okkam.org/entity/ok0b509300-407b-4ba8-849a-2ba5314619e6
http://www.okkam.org/entity/ok61fd1f8d-64c3-4c20-b4c9-1cbf5f4842a8

5.2 Document Dataset
Wikipedia is a multilingual, web-based, free-content encyclopedia project. It is

written by volunteers from all around the world and contains now more than 10 millions

articles in more than 260 languages. Today it is one of the largest and most visited sites

on the web. For this reason it is often used for as a source for information retrieval.

 Wikipedia articles are organised as follows:

• Each subject in the encyclopedia is covered by one article and is identifiable by

the article title.

• Articles can also belong to one or more categories, pre-existing or created by the

author manually. Encyclopedia users can access the knowledge base by exploring

the articles within a category.

• Article can link to other articles, so that the users can navigate following the

links.

• Articles may contain an infobox (a relational concise summary of an article: a

set of attribute / value pairs describing the article’s subject).

Many researches use the Wikipedia’s categorisation structure and links to other

articles whether to build a thesaurus[18] or to automatically cross-reference the docu-

ments and enrich them with links to the appropriate Wikipedia articles[17]. The

others[27] benefit from the extraction of Wikipedia infobox attribute values.

Schönhofen (2006) [22] exploits only the titles and categories of Wikipedia art-

icles in order to determine the most characteristic category of a document. The al-

gorithm identifies and ranks all Wikipedia categories supposedly related to the docu-

ment by matching Wikipedia article titles with words of the document.

In our work we exploit the informativity of Wikipedia articles and use them for

conducting the experiments..

As an open source project, the entire content of Wikipedia is easily obtainable.

The version used in this study was released in 2006. The full content and revision his-

tory at this point occupy 40 GB of compressed data. We consider only the part of the

articles, that belong to a category “Film”, in total 45086 documents.

25

6 Evaluation

In this chapter we compare different scoring methods for structured query ranking

with respect to their ability to correctly disambiguate keyword query through systematic

experiments. We analyse the following ranking functions: IDF, IDF*avg(DAF),

IDF*CAF, ARank, IDF*ARank and DF.

 For our evaluation we use 50 manually created user’s requests and 50 keyword

requests, automatically extracted from randomly selected Wikipedia articles.

The automatically extracted requests contain 5 keywords (in this case they can be

compared to user’s requests, which contain 3-5 words) and are divided into :

 (a) text-based (TF-IDF in the document)

(b) database-based (average TF-IDF in the database)

 (c) text- and database-based (a product of TF-IDF in the document and average

TF-IDF in the database)

For each request exists exactly one entity in the repository, so we execute the

keyword search till we find the relevant entity.

 The further evaluation is based on 4 aspects :

1. Precision (number of answered requests)

2. Effectiveness (rank of a relevant result)

3. Efficiency (rank of the query, that returns a relevant result)

4. Relevance (the number of retrieved results in top-k requests)

6.1 Precision
The quality of a entity request denotes that the intended entity was found. As we

were mostly interested how precise the automatically extracted queries are, we executed

all structured queries. Table 6.1 shows the evaluation results for both user’s and

extracted processed entity requests and presents how many intended entities were

found.

 The high precision of user’s requests shows that users can plausibly describe their

information need and almost always find the potential keywords. Pleasant is the fact,

that in 47 cases a relevant entity was found with both text-based and with a mix of text-

based and database-based requests. The similarity of results while using these extracted

requests can be explained by the fact, that the extracted keyword queries were alike. As

26

a consequence, the average idf score from repository adds little to keywords retrieval, it

functions only as a filter for the words that don’t occur in the repository. Only 10 of

extracted database-based requests returned a relevant entity. It means that keywords are

not representative for the document. But current results also indicate the importance of

the context.

User’s
Requests

Text-based
Extraction

Database-based
Extraction

Text- and Database-
based Extraction

Successful
Search 50 47 10 47

Table 6.1 Number of successfully answered requests

In our next experiment we’ve tested the precision of the top-k queries. For this

purpose, we proceed with the construction and execution of top-k structured queries till

we obtain the first results. The precision of the ranking factor is then calculated as an

amount of found relevant entities proportional to the total number of relevant entities.

The results are presented in table 6.2, the highest precision is highlighted in red.

IDF IDF*avg(DAF) IDF*CAF ARank IDF*ARank DF

User’s
Requests 0,89 0,9 0,72 0,92 0,74 0,5

Text-based
Extraction 0,54 0,62 0,68 0,72 0,68 0,42

Database-
based

Extraction
0,16 0,08 0,06 0,04 0,02 0,06

Text- and
Database-
based Ex-
traction

0,56 0,6 0,6 0,7 0,7 0,4

Table 6.2 Precision of results from Top-k Queries

The results show that ARank has the highest precision for user’s requests as well

27

as for automatically extracted requests. On the whole, we’ve noticed that the use of

attribute-independent ranking factors for scoring extracted requests increases the

precision of results compared to pure IDF factor. Interesting is also the fact, that though

DF has the highest probability of match in the repository, the returned results lack on

precision.

6.2 Effectiveness
The aim of the keyword query is to reveal the most relevant results first. That’s

why given a keyword query, we execute the structured queries till we found the relevant

entity and then assess how the different factors rank the proper result.

The results are illustrated in the Figures 6.1-6.4.

User's Requests

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Request Rank

R
es

ul
t R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.1 Effectiveness of ranking factors in user’s requests

We observed different ranking behaviours for the tested approaches. IDF ranking

factor functions well for each type of requests. In the case of user’s requests it is

overtopped only by IDF*avg(DAF). This shows that the use of cardinality factor is

important for predicting of the structured query, intended by a user. ARank was able to

rank the proper result in the first position for 41 queries, but it is not stable enough.

The worst performance was achieved with DF factor.

28

Text - Based Extraction

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
t R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.2 Effectiveness of ranking factors in text-based extracted requests

Text - and DB - Based Extraction

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
t R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.3 Effectiveness of ranking factors in text- and database-based extracted
requests

Concerning the text-based and a mix of text- and database-based extracted

requests, we’ve noticed that a combination of IDF and attribute-dependent ranking

factors avg(DAF) and CAF improves the effectiveness of the entity request. ARank

behaviour is here the same as in user’s requests. The text-based extracted queries were

more effective than in a combination with the database statistics, it once more proves

the importance of the context.

29

DB - Based Extraction

1

10

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
t R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.3 Effectiveness of ranking factors in database-based extracted requests

As to the database-based extracted request, where we concern the TF*IDF of the

words in the repository, the best performance is achieved by IDF. The other ranking

factors slightly decrease the effectiveness of the requests.

6.3 Efficiency
The purpose of ranking function is to disambiguate the structured queries in order

to quickly find a proper query for retrieving a relevant entity. The next aspect of our

evaluation is the number of queries, that need to be execute for obtaining the intended

answer from the repository. The figures 6.5-6.8 illustrate the efficiency of the ranking

factors in requests of different type.

Not surprisingly is the fact that the entity search lengthens while using IDF factor.

Here we deal with the terms that occur rarely in the collection and a probability for a

successful conjunction of subqueries is thus very low. As to the user’s requests, the best

performance is achieved with a combination with an attribute-dependent ranking factor

CAF.

30

User's Requests

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

Q
ue

ry
 R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.5 Efficiency of ranking factors in user’s requests

The attribute-dependent ranking factors increase the efficiency of the extracted

requests compared to IDF factor, as shown in the Figure 6.6 and 6.7, but this effect is

not so strong as in user’s requests.

Text-based Extraction

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

Q
ue

ry
 R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.6 Efficiency of ranking factors in text-based extracted requests

31

Text- and DB-based Extraction

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

Q
ue

ry
 R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.7 Efficiency of ranking factors in text- and database-based extracted requests

The quality of the keywords extracted only with the use of database statistics were

not significant enough to make coherent evaluation of the efficiency aspect. This can be

possibly because of the average TF*IDF score we use, as it to some extend corrupts the

attribute-specific score.

DB-based Extraction

1

10

100

1000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

Q
ue

ry
 R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.8 Efficiency of ranking factors in database-based extracted requests

32

6.4 Relevance
An efficient query should return only relevant results. That’s why our next aspect

of investigation is the total number of results returned from top-k queries. The

evaluation results are presented in Figure 6.8-6.12.

User's Requests

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
ts

 f
ro

m
 T

op
-k

 Q
ue

rie
s

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.9 Relevance in user’s requests

As to the user’s requests, the least amount of entities is returned with

IDF*avg(DAF) ranking factor, followed by IDF. So we can state that avg(DAF) filters

the results returned by IDF. Furthermore, the both factors have a similar behaviour in

almost all types of requests.

DF factor returns the greatest number of results, this can be crucial when a

keyword query is very specific. Concerning the extracted keyword queries, we notice

the better performance of DF factor as compared to user’s requests.

33

Text-Based Requests

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
ts

 f
ro

m
 T

op
-k

 Q
ue

rie
s

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.10 Relevance in text-based extracted requests

Text - and DB - Based Extraction

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
ts

 fr
om

 T
op

-k
 Q

ue
rie

s

IDF
IDF*avg(DAF)
IDF*CAF

ARank
IDF*ARank
DF

Figure 6.11 Relevance in text- and database-based extracted requests

The relatively small number of returned entities for database-based extracted

requests, as shown in Figure 6.12, is due to the rareness of the keywords in the

repository. But as we already mentioned, the possible reason is the average TF*IDF

factor is error-prone.

34

DB - Based Requests

1

10

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
ts

 fr
om

 T
op

-k
 q

ue
rie

s

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.12 Relevance in database-based extracted requests

35

7 Conclusion

Keyword search interfaces, which are popular by the human users due to their

simplicity and usability, provide as well a convenient way for application developers to

address the problem of incompleteness of the automatically extracted database requests.

As a consequence, keyword-based requests, either manually created, or automatically

extracted from unstructured documents, are typically underspecified. Keyword requests

lack expressiveness, such that further disambiguation is required in order to precisely

match them against the content of the database.

In this work we investigated how the database and document context can be

exploited in order to automatically extract representative keywords from a document

and retrieve information related to the original document from the database. We

analysed the influence of the statistical information either provided by the document

collection or the target database on the quality of the extracted keywords and

corresponding search results.

During the query answering process we performed disambiguation of the

keywords. Thereby the keyword request was translated into a ranked set of structured

queries each having well-defined semantics. We compared the factors, which were

important for the keyword request disambiguation for user- and automatically extracted

requests. We employed statistical metadata about the database content to create and

rank such structured queries and analysed how alternative query ranking factors

increase effectiveness and efficiency of the search. We identified that the number of

possible interpretations of a keyword request over the database grows exponentially

with the number of keywords. We introduced an optimization algorithm, which enabled

to reduce the number of interpretations, needed to be evaluated by the database.

We implemented our keyword extraction and disambiguation algorithms on the

top of the Okkam entity repository. We evaluated our approach using 50 movie related

Wikipedia documents and IMDB dataset imported in the Okkam entity repository as

well as a set of 50 movie related user requests from a log of a Web search engine. The

evaluation of the automatic keyword extraction techniques showed the importance of

the context information, like e.g. document or collection content. Database statistics

such as average keyword frequency across the database attributes was found to have

little influence on the effective keyword extraction. We identified differences in the

36

ranking factors, which have positive effects on disambiguation of user- vs.

automatically extracted keyword requests. Our experiments have shown, that attribute

specific selectivity plays an important role in answering both, user- as well as

automatically extracted requests. Concerning the user requests, a combination of the

selectivity factor with a keyword independent attribute ranking factor avg(DAF)

produced the best effectiveness, whereas the other keyword independent factor, CAF,

played a more important role in answering automatically extracted requests. The

ranking factors are described in Section 3.2.1 in detail.

This work opens many interesting future research directions. First of all,

experiments performed in this work can be repeated on a more heterogeneous dataset,

which can, for example, be contained in an entity repository like Okkam. Furthermore,

on the one hand, our experiments have shown that keyword extraction based on the

document context performs well, whereas on the other hand database statistics we used

so far did not enable satisfactory search results. We can further look at the useful

database statistics, like attribute specific selectivity to improve these results. Finally,

attribute selectivity based query ranking, which was shown to be a very effective

ranking factor, produced precise search results at the price of efficiency, as many

queries with empty results become the highest ranks. In the future work we can look at

the optimisation algorithms to reduce the number of executed structured queries and

thus response time of the system.

37

8. References

1. S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for Keyword-
Based Search over Relational Databases. In ICDE, 2002

2. G. Bhalotia, A. Hulgeri, C. Nakhey, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using BANKS. In ICDE, 2002

3. P. Bouquet, H. Stoermer, D. Cordioli, G. Tummarello. An entity name system for
linking semantic web data. 2008

4. J. D. Cohen. Language and domain-independent automatic indexing terms for ab-
stracting. Journal of the American Society for Information Science, 1995

5. Yu Cong, H.V. Jagadish. Querying complex structured databases. In VLDB,
2007

6. Daniela Florescu, Donald Kossmann, Ioana Manolescu. Integrating keyword
search into XML query processing. In WWW9, 2000

7. Michael J. Giarlo. A comparative analysis of keyword extraction techniques. Rut-
gers, The State University of New Jersey

8. Otis Gospodnetić, Erik Hatcher. Lucene in action, 2005

9. L. Guo, F. Shao, C.Botev, J. Shanmugandaram. XRANK: ranked keyword search
over XML documents. SIGMOD, 2003

10. Hbase http://hadoop.apache.org/hbase/

11. V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in relational
databases. In VLDB, 2002

12. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. In ICDE, 2003

13. A. Hulth. Improved automatic keyword extraction given more linguistic know-
ledge. In Proceedings of the 2003 Conference on Emprical Methods in Natural
Language Processing, Sapporo, Japan, 2003

14. Internet Movie Database http://www.imdb.com/

15. J. B. Keith Humphreys. Phraserate: An HTML keyphrase extractor. Technical
Report. 2002

38

http://hadoop.apache.org/hbase/

16. Y. Matsuo, M. Ishizuka. Keyword extraction from a single document using word
co-ocuurrence statistical information. International Journal on Artificial Intelli-
gence Tools, 2004

17. David Milne, Ian H. Witten. Learning to link with Wikipedia. In CIKM, 2008

18. David Milne, Olena Medelyan, Ian H. Witten. Mining domain-specific thesauri
from Wikipedia : A case study. In WI, 2006

19. Okkam Project http://www.okkam.org/

20. T.Palpanas, J. Chaudhry, P. Andritsos, Y. Velegrakis. Entity Management in
OKKAM. 2008

21. L. Plas, V.Pallotta, M.Rajman, H.Ghorbel. Automatic keyword extraction from
spoken text. A comparison of two lexical resources: the EDR and WordNet. Pro-
ceedings of the 4th International Language Resources and Evaluation, European
Language Resource Association, 2004

22. Peter Schönhofen. Identifying document topics using the Wikipedia category net-
work. In WI, 2006

23. Y. Suzuki, F. Fukumoto, Y. Sekiguchi. Keyword extraction of radio news using
term weighting with an encyclopedia and newspaper articles. SIGIR, 1998.

24. Sandeep Tata, Guy M. Lohman. SQAK: Doing more with keywords. SIGMOD,
June 9–12, 2008

25. Wikipedia http://www.wikipedia.org/

26. I. Witten, G. Paynte, E. Frank, C. Gutwin, C. Nevill-Manning. KEA: practical
automatic keyphrase extraction. In Proceedings of the 4th ACM Conference on
Digital Library, 1999

27. Fei Wu, Raphael Hoffmann, Daniel S. Weld. Information extraction from Wiki-
pedia: moving down the long tail. In KDD’08, 2008

28. Chengzhi Zhang, Huilin Wang, Yao Liu, Dan Wu, Yi Liao, Bo Wang. Automatic
Keyword Extraction from Documents Using Conditional Random Fields. Journal
of Computational Information Systems, 2008

29. Xuan Zhou, Gideon Zenz, Elena Demidova, Wolfgang Nejdl. SUITS: structuring
user’s intent in search. In EDBT, 2009

39

http://www.wikipedia.org/
http://www.okkam.org/

	Table of contents

