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Abstract

Users  often  try  to  assimilate  information  on  a  topic  of  interest  from multiple 

information sources. Sometimes user’s information need might be expressed in terms of 

an available relevant document, rather than a query. This document can result from a 

web search, but also arrive at user’s desktop directly e.g. as an e-mail attachment. 

Recently  a  lot  of  work  was  performed  towards  enabling  keyword  search  in 

databases.  However,  database  search  engines  are  mostly  adapted  to  the  queries 

manually created by users. In case user’s information need is expressed in terms of a 

document,  we need  to  create  algorithms  that  automatically  extract  keyword  queries 

from the available data and map them to the database content. 

In this work we analyse influence of the selected document and database statistics 

on effective keyword extraction and disambiguation in order to retrieve relevant results 

from a database. 

We implemented our keyword extraction and disambiguation algorithms on the 

top  of  the  Okkam entity  repository.  We evaluated  our  approach  using  a  real-world 

dataset containing Wikipedia documents and IMDB data as well as a set of user-defined 

keyword queries from a Web search engine log.

3



Table of contents

1  Introduction                                                                                             5
     1.1  Motivation.................................................................................................5
     1.2  Outline........................................................................................................7

2  Problem Analysis                                                                                     8

 2.1 Keyword Extraction.................................................................................8
          2.1.1 Existing Approaches................................................................8

   2.2 Keyword Search.....................................................................................11
          2.2.1 Keyword Search Approaches..............................................11 
          2.2.2 Entity Repository....................................................................12

3  Conceptual Design                                                                                 14

     3.1 Automatic Keyword Extraction..........................................................14
     3.2 Keyword Request Processing..............................................................16

          3.2.1 Attribute Ranking Factors....................................................16
          3.2.2 Query Score..............................................................................19
          3.2.3 Query Ranking Algorithm....................................................20

 4  Software Used                                                                                       22

5  Datasets Used                                                                                        23

    5.1 Semi-Structured Dataset.......................................................................23
5.2 Document Dataset..................................................................................25

    
6  Evaluation                                                                                              26 

     6.1 Precision...................................................................................................26
     6.2 Effectiveness...........................................................................................28
     6.3 Efficiency.................................................................................................30

     6.4 Relevance.................................................................................................33     

7  Conclusion                                                                                             36 

8  References                                                                                             38 

4



1  Introduction

The first chapter  begins  with the clarification of the motivation for the bachelor 

thesis,  this part will illustrate  the actuality and aim of the Bachelor thesis. Finally, the 

section 1.2 gives a brief  overview of the following chapters.

1.1 Motivation

Information is the most powerful weapon in the modern society. Every day we are 

overflowed with a huge amount  of data in form of electronic  newspaper articles,  e-

mails, webpages and search results. Often, information we receive is incomplete, such 

that further search activities are required to enable correct interpretation and usage of 

this information. For instance, in an enterprise, given a customer request sent via e-mail, 

search  activities  of  an  employee  in  the  customer  support  department  can  include 

lookups of the information on the related products in the intranet databases, as well as 

Web- and desktop search.

Keyword search is a usable and powerful tool which enables efficient scanning of 

large document collections. It frees the user from learning the syntax of a structured 

query  language,  like  e.g.  Boolean  query,  SQL  or  XQuery  and  understanding  their 

complex semantics. Recently, keyword search found application in the databases, where 

it enables data retrieval in case the schema is unknown to the user, going beyond pre-

defined  forms  and applications  [1,  2,  5,  9,  11,  12,  23,  24,  29].  On the  other  hand, 

usability comes at the price of expressiveness. In order to correctly answer a keyword 

request, database system need to identify intention behind the keywords; this introduces 

additional query processing cost at the database side.

In case an information need of the user is represented through a document, rather 

than a manually created keyword request,  keyword annotations of this document (as 

well as other available metadata) can be used to build a keyword query. For instance, 

scientific articles are often annotated with keywords. Also Web documents, especially 

multimedia resources, can be already associated with tags. In an electronic magazine, 

keywords give a clue about the main idea of an article, in a book they quickly lead the 

reader to the whereabouts of the information sought. On the web, tag annotations help 
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to find multimedia and other resources. Unfortunately, a large portion of documents on 

the  Web  still  does  not  have  any keywords  assigned.  Moreover,  creation  of  manual 

annotations is time-consuming, such that automatic ways of keyword extraction from 

the documents  are  required.  In the following we illustrate  the necessity of keyword 

extraction with a short scenario. 

A technician Alice supplies customers  of an internet  hardware sales enterprise 

with expert information regarding the installation and usage of the products. Every day 

she  receives  a  lot  of  e-mails  which  contain  description  of  the  products  and  usage 

problems at different level of detail. In order to answer the request, she needs to identify 

product  specifications  such as  a  model,  producer,  production  country,  etc.  and then 

search in a database for further product details. In order to answer the request, she first 

reads  the  message,  trying  to  identify  useful  keywords,  then  retrieves  necessary 

information from the enterprise database using the keyword search interface. However, 

the  manual  assignment  of  high  quality  keywords  is  time-consuming.  Automatic 

keyword extraction would enable Alice to immediately identify related information in 

the enterprise database and essentially reduce response time to the customer.

Many existing  algorithms  and  systems  aimed  to  perform automatic  keywords 

extraction  have  been  proposed  [4,  13,  15,  16,  21,  23,  26,  28].  Currently  existing 

solutions for automatic keyword extraction require either domain specific knowledge 

[13, 21, 23] or training examples [23, 26]. These approaches require human interaction 

and need to be adapted to the specific application domain. In case when the documents 

representing user information need are obtained from the Web search or arrive to the 

user desktop via e-mail, this information is not available.     

In this  thesis we develop an approach to identify information related to a text 

document inside a database. We  analyse database and document statistics, which are 

useful  for the keyword  extraction and develop approach of keyword disambiguation 

inside the database. We compare performance of the system which uses automatically 

extracted keywords with the one of user generated queries. We evaluate our approach 

using entity repository containing data extracted from the Internet Movie Database [14] 

and subset of Wikipedia pages [25] related to the movie domain.
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1.2  Outline

The outline of the thesis is organised as follows: 

Chapter 2 analyses the problem area by presenting the existing approaches in the 

keyword extraction and database search domains. This gives an overview of the related 

works and explains the choice of our conceptual  design.

Chapter 3 specifies the conceptual design and exploited heuristics. The detailed 

description  of  the  used  statistical  measures  for  automatical  keyword  extraction  is 

provided in the section 3.1. The following section introduces the notion of a structured 

query and presents the keyword- and attribute-dependent ranking factors for repository 

request.

Chapter 4  particularises the software used for the implementation.

Chapter 5  illustrates the datasets used for experimental evaluation.

Chapter 6  demonstrates the evaluation results from processing different types of 

database requests.

Chapter  7  gives  a  brief  summary of  the  work done and presents  some future 

research directions. 

Chapter 8 lists the the related works.
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2  Problem Analysis

The focus of our work is in enabling an ordinary user search through the data in 

the repository, having only a text document. To make this possible, we need to separate 

this process in two phases: first we need to extract the keywords that describe the docu-

ment, and then effectively process the keyword query.  That’s why we divided this sec-

tion into two parts: the the section 2.1 gives the brief  insights into the issue of automat-

ic keyword extraction,  keyword search problem will be discussed in the section 2.2. 

Thereby the existing approaches will be presented in order to familiarize the user with 

the related works and explain the choice of our conceptual design.   

2.1 Keyword Extraction

Automatic keyword extraction is the task to identify a small  set of words, key 

phrases, keywords, or key segments from a document that can describe the meaning of 

the document [13]. It should be done systematically and with either minimal or no hu-

man intervention, depending on the model. The goal of automatic extraction is to apply 

the power and speed of  computation  to  the problems of  access  and discoverability, 

adding value to information organization and retrieval without the significant costs and 

drawbacks associated with human indexers [7].

2.1.1 Existing Approaches

 The manual extraction of keywords is slow, expensive and bristling with mis-

takes.  Therefore,  most  algorithms  and  systems  to  help  people  perform  automatic 

keyword extraction have been proposed.

 Existing  methods  can  be  divided  into  four  categories:  simple  statistics, 

linguistics, machine learning and mixed approaches [7, 28].

 Simple Statistics Approaches

These methods are simple, have limited requirements and don’t need the training 

data. They tend to focus on non-linguistic features of the text such as term frequency, 

inverse document frequency, and position of a keyword. The statistics information of 

the words can be used to identify the keywords in the document. Cohen uses N-Gram 
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statistical information to automatic index the document [4]. Other statistics methods in-

clude word frequency, TF*IDF, word co-occurrences [16], etc. The benefits of purely 

statistical methods are their ease of use and the fact that they do generally produce good 

results.

 Linguistics Approaches

These approaches use the linguistic features of the words, sentences and docu-

ment.  Methods which pay attention to linguistic features such as part-of-speech, syn-

tactic structure and semantic qualities tend to add value, functioning sometimes as fil-

ters for bad keywords. 

Plas et al. [21] use for evaluation two lexical resources: the EDR electronic dic-

tionary, and Princeton University's freely available WordNet. Both provide well-popu-

lated lexicons including semantic relationships and linking, such as IS-A and PART-OF 

relations and concept polysemy. During automatic keyword extraction from multiple-

party dialogue episodes, the advantages of using the lexical resources are compared to a 

pure statistical method and relative frequency ratio. 

Hulth  [13]  examines  a  few different  methods  of  incorporating  linguistics  into 

keyword extraction. Terms are vetted as keywords based on three features: document 

frequency (TF), collection frequency (IDF), relative position of its first occurrence in a 

document and the term's part of speech tag. The results indicate that the use of linguistic 

features signify the remarkable improvement of the automatic keyword extraction.

In fact, some of the linguistic methods are mixed methods, combining some lin-

guistic methods with common statistical measures such as term frequency and inverse 

document frequency. 

 Machine Learning Approaches

Keyword extraction can be seen as supervised learning from the examples.  The 

machine  learning mechanism works as  follows.  First  a set  of  training documents  is 

provided to the system, each of which has a range of human-chosen keywords as well. 

Then the gained knowledge is applied to find keywords from new documents.

The Keyphrase Extraction Algorithm (KEA) [26] uses the machine learning tech-

niques and naive Bayes formula for domain-based extraction of technical keyphrases. 

Suzuki et al. [23] use spoken language processing techniques to extract keywords 

9



from radio news, using an encyclopedia and newspaper articles as a guide for relevance. 

The process is separated into two phases: term-weighting and keyword extraction. First, 

a set of feature vectors is generated from different encyclopedia domains.  The same 

procedure  is  then  performed  on  a  corpus  of  newspaper  articles.  The  encyclopedia 

vectors are  compared  with the article  vectors using a similarity calculation  so as to 

separate the latter  into different domains,  after  which they are sorted,  producing the 

final set of feature vectors.

In the second phrase,  keyword extraction,  a segment  is analysed such that the 

most relevant domain is selected for it using the pre-existing feature vectors. Phoneme 

recognition software is employed to do the analysis, looking for the best fit between a 

segment's vectors and that of one of the encyclopedia domains. When the best fitting 

domain is chosen, its keywords are then assigned to the radio news segment.

 Mixed Approaches

Other approaches about keyword extraction mainly combine the methods men-

tioned above or use some heuristic knowledge in the task of keyword extraction, such as 

the position, length, layout feature of the words,  html tags around of the words, etc 

[15].

The overview of the related works reveals that the automatic keyword extraction 

is faster and less expensive than human intervention. Moreover the authors claim that it 

achieves the precision of the human indexers. However, currently existing solutions for 

automatic  keyword  extraction  require  either  training  examples  or  domain  specific 

knowledge. Our approach, on the contrary, doesn’t have this additional information. We 

apply the statistical measures to the automatical keyword extraction as they are domain-

independent and have limited requirements. Moreover, in our work we want to analyse 

how the database context can be exploited in order to automatically extract representat-

ive keywords from a document.
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2.2 Keyword Search
Keyword search enables user to process his query without any or only little know-

ledge of the database schema.

2.2.1 Keyword  Search Approaches

Many approaches try to satisfy the need for efficient information retrieval over struc-

tured and semi-structured data. BANKS [2] models the database as a directed graph 

where the tuples are the weighted nodes and a foreign-key relationships between the 

tuples are the directed edges. An answer to a query is then a subgraph connecting nodes 

matching the keywords. Similarly, Hristidis et al. [12] view a XML database as a graph 

of segments, where the nodes correspond to labelled XML elements. The aim of this 

method is to find connections between them that contain all the query keywords. DBX-

plorer [1] creates auxiliary tables during a preprocessing phase and DISCOVER [11] 

generates  and  evaluates  networks  of  tuples.  XRANK[9]  proposes  a  PageRank-style 

ranking for the XML result trees, which combines the scores of the individual nodes of 

the result tree.  

As a potential result, all these techniques return a list of tuple trees that contain all 

the keywords of the query. The main difference between them lies in the ranking func-

tion  for ordering the results. In our case, for a query consisting of extracted keywords 

we will not always find an exact match in a database, so we are also interested in partial 

correlation. 

Several  systems have been also proposed, that  implicitly or explicitly integrate 

structure-free components into structured queries, and allow a user to specify queries in 

a loose fashion on XML data. Meaningful Summary Query (MSQ) [5] permits users to 

write complex queries using only a summary of the schema. But the complexity of writ-

ing an MSQ query is comparable to XQuery and far from the simplicity of keyword 

queries. Florescu et al. [6] extend an existing XML query language in order to support 

keyword search. 

With these methods it is easier for a user to formulate a query. But our user, that 

have no knowledge of the repository schema, shouldn’t care about the learning of query 

language. 

11



Furthermore, instead of first using structural information of the database schema and 

then ranking answers,  new approaches have been proposed, that translate the keyword 

query into the correct  structured  query.  SQAK[24] generates  the network of  ranked 

structured queries. The results are then obtained by exploiting the fact  that keyword 

query can  be answered with just the few most relevant high-scored structured queries. 

SUITS[29]  proposes a framework for efficient constructing relational database query 

from keywords. The process is split into two phases. During the first pre-processing 

phase the templates (information about the primary-and foreign-key relations between 

the tupels) are created. In the second phase SUITS checks for all occurrences of the 

query terms in database tables and attributes. Then it combines the gained information 

with the pre-computed  query templates  and transforms  a user’s  keyword  query into 

structured queries. In the last step the system ranks the structured queries according to 

their likelihood of matching the user’s intent and returns the results from top-k queries.

In our work we use the idea of constructing a structured query with well-defined 

semantics, but apply it to another kind of repository, represented in the following sec-

tion. As it differs from a relational database, we introduce several keyword- and attrib-

ute-dependent ranking factors, described in detail in the chapter 3. 

2.2.2 Entity Repository
. The aim of the Okkam project [19] is to provide a basic set of entity name sys-

tem (ENS) functionality, it is designed to enable a web-scale system for assigning and 

managing unique, global identifiers to entities in the WWW[20]. A main aim of an ENS 

is to provide means for searching for the identifier  of an entity.  The Figure 2.1 [3] 

shows the implementation of a single node providing entity identifiers across the system 

boundaries.  While processing a query, the system has to decide whether an entity is 

already in repository and return a unique entity identifier or whether a new entity should 

be created.
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Figure 2.1 The ENS functionality of OKKAM

The Okkam entity repository is a large-scale structured directory, where entity IDs 

along  with  some  small  amount  of  descriptive  semi-structured  information  for  each 

entity are stored. This description is represented as key-value pairs encoded in XML. 

The data in repository is partly de-normalized, i.e. an entity can contain some key-value 

pairs of the referred entities. All entities in the repository are indexed using an inverted 

index, which includes attribute specific statistics. 

The purpose of storing this information is to use it for discriminating among entit-

ies.
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3  Conceptual Design

This  chapter  describes  in  detail  the  techniques  used  for  automatic  keyword 

extraction in the section 3.1 and our approach for keyword search in the section 3.2.

3.1 Automatic Keyword Extraction
The  task  of  automatic  keyword  extraction is  to  identify  a  set  of  words, 

representative for a document.  To achieve this  we use a simple statistical  approach. 

Thereby, as we intend to exploit the properties of a document and of a repository, we 

need to find the comparable measures.

One of the simple weighting is TF*IDF.  The TF part intends to give a higher 

score to  a  document  that  has more  occurrences  of  a  term,  while  the IDF part  is  to 

penalize words that are popular in the whole collection.  The further factors such as 

position of  the word in a document or the length of a document are not comparable, as 

the database entries are much more shorter.

Due to the type of extraction, we divide the  automatic keyword extraction into 3 

groups:

• Text – Based

• Database – Based

• Text –  and  Database – Based

Text – Based Extraction
 The keyword extraction is conducted exploiting the TF*IDF weight of the term. 

It is calculated  according to the formula:

                      TF * IDF (term)   = 

where TF(term) is the frequency of a term in the given document, N is the total number 

of documents in the collection, DF(term) is number of documents, that contain the term.

Database – Based Extraction
In this type of extraction we use the database specific statistical information. 

As to the entity representation considered in this work, its attribute values tend to 
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n

contain in average about 2 words, so we can assume that the tf  score equals 1. As term 

occurrences are usually distributed sparsely in a database, there can be more than one 

attribute it appears in. We build the average TF*IDF score over all the attributes, that 

contain the given term.

              

          avg (TF*IDF(term,attribute))   = 

where  n  is the number of attributes that contain the given term and attribute-specific 

TF*IDF score of a term is computed as follows:

              

                TF * IDF (term, attribute)   = 

thereby DF(attribute) is  number  of  entities  containing  the  given  attribute  and 

DF(term,attribute) is  number  of  entities  where  the  given  term appears  in  the  given 

attribute. 

 

Text – and Database – Based Extraction  
A combined TF*IDF score is then a product of document- and database-specific 

scores : TF*IDF (term)  * avg(TF*IDF(term,attribute)). 
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3.2 Keyword Request Processing
In order to construct the structured keyword request for an entity (i.e. individual, 

instance,  “thing”),  we  first  need  to  identify  the  attributes  in  which  each  keyword 

appears. This is performed in one step using an inverted index available in the entity 

repository. Then the score is computed for every subquery q, which is a combination of 

an attribute  a and a keyword  k so that   q  = “k occurs in  a”. In our work we evaluate 

several attribute ranking approaches. In the next step, possible structured queries, each 

being a conjunction of subqueries, are constructed.  Finally,  these queries are ranked 

using query ranking criteria discussed in the following in Section 3.2.3 and executed 

against the entity repository. 

 

3.2.1 Attribute Ranking Factors

The Okkam entity  is  represented  by  a  set  of  (attributeName = attributeValue) 

pairs.  As our keyword request is a bundle of terms without the specification of attribute 

names, our first task is an identification of the attributes where each keyword appears in 

the repository. Then a specific score is computed for each attribute/keyword pair. 

The three intuitive and desirable constraints that any reasonable retrieval formula 

should satisfy are: term frequency tf, inverse term frequency idf  and document length 

normalization  dl.  Applied to our attribute-specific approach, the  tf  heuristic intends to 

assign a higher score to an attribute of a single entity that has more occurrences of a 

query term. By intuition, in a collection, the more entities a term appears in a certain at-

tribute, the worse discriminator it is, and it should be assigned a smaller idf  weight. The 

attribute length normalization is to avoid favouring long attributes, as long attributes 

generally have more chances to match a query term simply because they contain more 

words.

As to the entity representation considered in this work, its attribute values tend to 

contain in average about 2 words, so that the tf and dl score will have no effect, as the 

term usually appears only once pro attribute value and all attributes are approximately 

of the same length.

Because of this as a basis for our score computing we use only the attribute-spe-

cific idf weight of a keyword, which is computed as follows : 
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∑attributesDF keyword , attribute 

Attribute specific IDF score (IDF):

                IDF (keyword, attribute)   = 

where  DF(attribute) is  number  of  entities  containing  the  given  attribute  and 

DF(keyword, attribute) is number of entities where the given keyword appears in the 

given attribute. 

Attribute specific DF score (DF):
Opposite  to  idf,  we  propose  the  method  that  is  based  on  the  probability  of 

keyword match in an attribute.  The core idea of the  df score is that probability of the 

match increases with increasing spreading of the keyword over the attributes.  If  the 

keyword appears in the given attribute more frequently than in other attributes than this 

attribute/keyword combination becomes the higher score than the others. The spread 

score is calculated according to the formula:

             

         DF (keyword, attribute)   =  

where  DF(keyword,  attribute) is  number  of  documents,  where  the  keyword 

appears in the given attribute. The sum of the df scores of different attributes is 1.

The  idf and df scores are keyword-dependent, but what about the attribute itself? 

How do attributes influence the quality of keyword search, is it helpful to exploit them 

in our retrieval?    

In  this  thesis  we  represent  two  attribute-dependent  ranking  factors:  collection 

attribute frequency, which reflects the importance of an attribute in the collection and 

average document attribute frequency, that expresses the cardinality of an attribute in a 

document.

Collection attribute frequency (CAF):
By intuition,  the more  documents  have the  attribute,  the higher  is  the general 
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importance of this attribute. The collection attribute frequency is computed as follows:

                                    CAF(attribute)  = 

where DF(attribute) is number of documents containing the given attribute and N is the 

total number of documents in the collection.

Average document attribute frequency (avg(DAF)):

In the context of this thesis, the cardinality of the attribute describes the relation-

ship of an attribute with its related values in a single entity. The possible values of con-

nectivity are "one-to-one" or "one-to-many".

A one-to-one (1:1) relationship is when an entity attribute has only one value. For 

example, a movie entity has one title or single production year. 

A one-to-many (1:N) relationship exists in a case when an entity has pairs attrib-

utei = valuei, attributej = valuej, so that attributei = attributej and valuei ≠ valuej. An 

example of a 1:N relationships is actors or different shooting spots. 

The  1:1  relations  are  more  descriptive  than  1:N,   that’s  why  the  smaller  the 

number of attribute values per document is, the higher is the relevance of this attribute. 

The avg(DAF) is calculated according to the formula :  

                      avg(DAF(attribute))    = 

where DAF(attribute) is the number of times an entity contains the given attribute and 

DF(attribute) is number of entities containing the given attribute.

 Attribute Rank (ARank):
 The  total  global  rank  of  the  attribute  is  then  a  combination  of  keyword 

independent attribute ranking factors.

ARank (attribute)   =   CAF(attribute) * avg(DAF(attribute))
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 3.2.2  Query Score

After obtaining the attribute-specific score for each attribute/keyword combina-

tion,  our  next  step lies  in  constructing  the structured  query for  further  request  pro-

cessing. The key idea is that a structured query is composed from subqueries using the 

and-semantics, corresponding to the “and” operator of the boolean model. 

Let q1 ,..., qn be a set of subqueries that represent the attribute/keyword combina-

tions,  a  structured  query  Q is  then  defined  as   the  conjunction  of  the  subqueries 

q1◦ ...◦ qm ,  m ≤ n. 

The possible conjunctions of subqueries q1, q2, q3 are presented in a Figure 3.1.

Figure 3.1  Construction of structured query 

The relevance of the whole query is represented as a sum of the scores of all sub-

queries.

                                  Score (query) = ∑ Score(subquery q)

where  Score(subquery q) can be defined using a combination of the above attribute 
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ranking  factors.  Typical  combinations  are:  IDF,  DF,  IDF*avg(DAF),  IDF*CAF, 

ARank, IDF*ARank.

3.2.3  Query Ranking Algorithm

The aim of the query ranking procedure is to identify the structured query which 

delivers  possibly  precise  results to  the  keyword  entity  requests.  But  the  number  of 

possible  structured  queries  increases  exponentially  with  the  growing  number  of 

keywords  and  attributes  in  the  repository.  As  for  instance  Figure  3.1  shows,    we 

become 7 structured queries from only 3 subqueries.  For that reason the construction 

and processing  of  all  intended  entity  requests  will  be  a  very  expensive   and  time-

consuming operation. 

The first  native  solution is  to construct  all  possible  queries, rank them before 

execution and process only the high-scored conjunctions. But typically, the number of 

queries is too high, such that it is infeasible to build and score all possible combinations. 

Therefore we developed the following optimization algorithm to iteratively calculate the 

highly scored requests.

Given a a sorted subquery list { qn1 ... qnk }  for all occurrences of a keyword n in 

different attributes, we build a set S = {{ q11 ... q1k }, ... , { qn1 ... qnk }} for all keywords 

from 1 to n.

Our  task  is  to  limit  the  number  of  queries  to  be  constructed,  as  we are  only 

interested  in  a  few  top-k highly  scored  queries.  For  this  purpose  we introduce  two 

bounds for the score of the query Qtop-k. The upper bound corresponds to the score of 

the query  Qk, that consists of the subqueries  q at  k posision. The lower bound is  the 

sum of the scores of elements at the (k + 1)-th position in each list. For a query Qk is 

true: 

score(Qk-1) > score (Qk) > score(Qk+1)

The intermediate scores are obtained due to the fact that some of highly scored 

elements at k position can build a number of highly scored combinations with the other 

lower scored elements in the lists. Due to this fact, a list of queries is constructed with 

the participation of the subqueries at the position k. The query Q is called  top-k query 
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when its score satisfies the condition:  

score(Qk) ≥ score (Qtop-k) > score(Qk+1)

In the Figure 3.2 we present an example for constructing the top-1 queries. The 

list of constructed queries consists of 40 queries, but only 11 of them satisfy the score 

bounds and are considered as top-1 queries. With the native solution there would be 70 

possible queries.

Figure 3.2 An Example for Top-1 Queries.  

The requests with the highest scores are then executed till we obtain the intended 

minimum number of results. Algorithmically this method gives an advantage, especially 

if the length of the lists (number of attributes) is big.
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4  Software Used

We implemented our keyword extraction and disambiguation algorithms on the 

top of the Okkam entity repository.  

The  entity  IDs  along  with  some  small  amount  of  descriptive  semi-structured 

information for each entity are stored using the hbase (version 0.1.2) [10] - the Hadoop 

database that can manage very large tables.  The description is represented as key-value 

pairs  encoded in  XML.  All  entities  in  the  repository are  indexed using an  inverted 

index, which includes attribute specific statistics.  This capacity is provided by lucene 

(version 2.3.2). 

 Lucene [8] is a high-performance, scalable Information Retrieval library. It is a 

mature,  free,  open-source project  implemented  in  java.  Lucene can index and make 

searchable any data that can be converted to text format. 

The algorithms were implemented using JDK 1.6, all experiments were conducted 

on the Linux server of the L3S Research Center.
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Attribute key/value pair

5  Datasets Used

This chapter describes the datasets that we use for experimental evaluation.

5.1 Semi-Structured Dataset
In our work we use the IMDB [14] dataset  that  consists of 2.347.778 entities, 

describing persons and 1.263.756 movie entities. Each entity has a unique identifier, 

called  okkamid  (oid)  and  a  short  description.  This  description  of  the  entity is 

represented as key-value pairs encoded in XML. The data in repository is partly de-

normalized, i.e. an entity can contain some key-value pairs of the referred entities. All 

entities are indexed using an inverted index, which includes attribute specific statistics. 

In total there are 46 different attributes.

Below we present examples of entities, describing person and movie:

Person Entity
<?xml version='1.0' encoding='UTF-8'?>
<entity xmlns='http://www.okkam.org/schemas/entitySchema.xsd'>
<oid>http://www.okkam.org/entity/okec9035c7-6cf0-491a-86ac-0aba5fc58d28</oid>
<profile>
<semanticType> movie </semanticType>

<attributes>
 <attribute>

 <name> name </name>
 <value> Aaltonen, Remu </value>

</attribute> 
<attribute> 

 <name> birth notes </name> 
 <value> Helsinki, Finland </value>

</attribute> 
<attribute>

 <name> birth name </name>
 <value> Aaltonen, Henry Olavi </value>

</attribute>
<attribute>

 <name> birth date </name>
 <value> 10 January 1948 </value>

</attribute>
</attributes>

</profile>
</entity>
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1:N Relationship

Decomposition

Movie Entity
<?xml version='1.0' encoding='UTF-8'?>
<entity xmlns='http://www.okkam.org/schemas/entitySchema.xsd'>
<oid> http://www.okkam.org/entity/ok6c9ea0ff-838f-4c98-bdad-0e458843546c </oid>
<profile>
<semanticType> movie </semanticType>

<attributes>
<attribute>

<name> title </name>
<value> $5000 Reward, Dead or Alive </value>

</attribute>
<attribute>

<name> kind </name>
<value> movie </value>

</attribute>
<attribute>

<name> production_year </name>
<value> 1911 </value>

</attribute>
<attribute>

<name> genres </name>
<value> Short </value>

</attribute> 
<attribute>

<name> genres </name>
<value> Western </value>

</attribute>
<attribute>

<name> release dates </name> 
<value> USA:8 June 1911 </value> 

</attribute>
<attribute> 

<name> actor </name> 
<value> Kerrigan, J. Warren </value>
<veid> http://www.okkam.org/entity/ok61fd1f8d-64c3-4c20-b4c9-1cbf5f4842a8 </veid>

</attribute>
<attribute>

<name> actress </name>
<value> Bush, Pauline </value>
<veid>http://www.okkam.org/entity/ok0b509300-407b-4ba8-849a-2ba5314619e6</veid>

</attribute>
<attribute>

<name> director </name>
<value> Dwan, Allan </value>
<veid> http://www.okkam.org/entity/ok45276a61-85cd-43d8-9a68-e920bc3f670d</veid>

</attribute>
</attributes>

</profile>
</entity>
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5.2 Document Dataset
Wikipedia is a multilingual,  web-based, free-content encyclopedia project.  It is 

written by volunteers from all around the world and contains now more than 10 millions 

articles in more than 260 languages. Today it is one of the largest and most visited sites 

on the web. For this reason it is often used for as a source for information retrieval.

 Wikipedia articles are organised as follows:

• Each subject in the encyclopedia is covered by one article and is identifiable by 

the article title. 

• Articles can also belong to one or more categories, pre-existing or created by the 

author manually. Encyclopedia users can access the knowledge base by exploring 

the articles within a category.

• Article can link to other articles, so that the users can navigate following the 

links.

• Articles may contain an infobox (a relational concise summary of an article: a 

set of attribute / value pairs describing the article’s subject).

Many researches use the Wikipedia’s categorisation structure and  links to other 

articles whether to build a thesaurus[18] or to  automatically cross-reference the docu-

ments  and  enrich  them  with  links  to  the  appropriate  Wikipedia  articles[17].  The 

others[27] benefit from the extraction of Wikipedia infobox attribute values. 

Schönhofen (2006) [22] exploits only the titles and categories of Wikipedia art-

icles  in  order  to  determine  the most  characteristic  category of  a  document.  The  al-

gorithm identifies and ranks all Wikipedia categories supposedly related to the docu-

ment by matching Wikipedia article titles with words of the document. 

In our work we exploit the informativity of Wikipedia articles and use them for 

conducting the experiments..

As an open source project, the entire content of Wikipedia is easily obtainable. 

The version used in this study was released in 2006. The full content and revision his-

tory at this point occupy 40 GB of compressed data. We consider only the part of the 

articles, that belong to a category “Film”,  in total 45086 documents.
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6 Evaluation

In this chapter we  compare different scoring methods for structured query ranking 

with respect to their ability to correctly disambiguate keyword query through systematic 

experiments.  We  analyse  the  following  ranking  functions:  IDF,  IDF*avg(DAF), 

IDF*CAF, ARank, IDF*ARank and DF.

 For our evaluation we use 50 manually created user’s requests and 50 keyword 

requests, automatically extracted from randomly selected Wikipedia articles. 

The automatically extracted requests contain 5 keywords (in this case they can be 

compared to user’s requests, which contain 3-5 words) and are divided into :

          (a) text-based (TF-IDF in the document)

(b) database-based (average TF-IDF in the database)

          (c) text- and database-based (a product of TF-IDF in the document and average 

TF-IDF in the database)

For each request exists  exactly one entity in the repository,  so we execute the 

keyword search till we find the relevant entity.

 The further evaluation is based on 4 aspects : 

1. Precision ( number of answered requests) 

2. Effectiveness ( rank of a relevant result ) 

3. Efficiency ( rank of the query, that returns a relevant result)

4. Relevance ( the number of retrieved  results in top-k  requests ) 

6.1 Precision
The quality of a entity request denotes that the intended entity was found. As we 

were mostly interested how precise the automatically extracted queries are, we executed 

all  structured  queries.  Table  6.1  shows  the  evaluation  results  for  both  user’s  and 

extracted  processed  entity  requests  and  presents  how  many  intended  entities  were 

found.

 The high precision of user’s requests shows that users can plausibly describe their 

information need and almost always find the potential keywords. Pleasant is the fact, 

that in 47 cases a relevant entity was found with both text-based and with a mix of text-

based and database-based requests. The similarity of  results while using these extracted 

requests can be explained by the fact, that the extracted keyword queries were alike. As 
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a consequence, the average idf score from repository adds little to keywords retrieval, it 

functions only as a filter for the words that don’t occur in the repository.  Only 10 of 

extracted database-based requests returned a relevant entity. It means that keywords are 

not representative for the document. But current results also indicate the importance of 

the context.  

User’s 
Requests

Text-based
Extraction

Database-based
Extraction

Text- and Database-
based Extraction

Successful 
Search 50 47 10 47

Table 6.1 Number of successfully answered requests

In our next experiment we’ve tested the precision of the top-k queries. For this 

purpose, we proceed with the construction and execution of top-k structured queries till 

we obtain the first results. The precision of the ranking factor is then calculated as an 

amount of found relevant entities proportional to the total number of relevant entities. 

The results are presented in table 6.2, the highest precision is highlighted in red.

IDF IDF*avg(DAF) IDF*CAF ARank IDF*ARank DF

User’s
Requests 0,89 0,9 0,72 0,92 0,74 0,5

Text-based
Extraction 0,54 0,62 0,68 0,72 0,68 0,42

Database-
based

Extraction
0,16 0,08 0,06 0,04 0,02 0,06

Text- and 
Database-
based Ex-
traction

0,56 0,6 0,6 0,7 0,7 0,4

Table 6.2 Precision of results from Top-k Queries

The results show that ARank has the highest precision for user’s requests as well 
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as for automatically extracted requests. On the whole, we’ve noticed that the use of 

attribute-independent  ranking  factors  for  scoring  extracted  requests  increases  the 

precision of results compared to pure IDF factor. Interesting is also the fact, that though 

DF has the highest probability of match in the repository, the returned results lack on 

precision. 

6.2 Effectiveness
The aim of the keyword query is to reveal the most relevant results first. That’s 

why given a keyword query, we execute the structured queries till we found the relevant 

entity and then assess how the different factors rank the proper result.

The results are illustrated in the Figures 6.1-6.4. 
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Figure 6.1 Effectiveness of ranking factors in user’s requests 

We observed different ranking behaviours for the tested approaches. IDF ranking 

factor  functions  well  for  each  type  of  requests.  In  the  case  of  user’s  requests  it  is 

overtopped only by IDF*avg(DAF).  This shows that  the use of cardinality  factor is 

important for predicting of the structured query, intended by a user.  ARank was able to 

rank the proper result  in the first position for 41 queries, but it is not stable enough. 

The worst performance was achieved with DF factor.
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1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
t R

an
k

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

 
Figure 6.2 Effectiveness of ranking factors in text-based extracted requests

Text - and DB - Based Extraction
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Figure 6.3  Effectiveness of ranking factors in text- and database-based extracted
requests

Concerning  the  text-based  and  a  mix  of  text-  and  database-based  extracted 

requests,  we’ve  noticed  that  a  combination  of  IDF  and  attribute-dependent  ranking 

factors avg(DAF) and CAF improves the effectiveness of the entity request.  ARank 

behaviour is here the same as in user’s requests. The text-based extracted queries were 

more effective than in a combination with the database statistics, it once more proves 

the importance of the context.
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DB - Based Extraction
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Figure 6.3  Effectiveness of ranking factors in database-based extracted  requests

As to the database-based extracted request, where we concern the TF*IDF of the 

words in the repository, the best performance is achieved by IDF. The other ranking 

factors slightly decrease the effectiveness of the requests.

6.3 Efficiency
The purpose of ranking function is to disambiguate the structured queries in order 

to quickly find a proper query for retrieving a relevant entity. The next aspect of our 

evaluation is the number of queries, that need to be execute for obtaining the intended 

answer from the repository. The figures 6.5-6.8 illustrate the efficiency of the ranking 

factors in requests of different type. 

Not surprisingly is the fact that the entity search lengthens while using IDF factor. 

Here we deal with the terms that occur rarely in the collection and a probability for a 

successful conjunction of subqueries is thus very low. As to the user’s requests, the  best 

performance is achieved with a combination with an attribute-dependent ranking factor 

CAF.

30



User's Requests
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Figure 6.5 Efficiency of ranking factors in user’s  requests

The attribute-dependent ranking factors increase the efficiency of the extracted 

requests compared to IDF factor, as shown in the Figure 6.6 and 6.7,  but this effect is 

not so strong as in user’s requests. 
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Figure 6.6 Efficiency of ranking factors in text-based extracted requests
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Text- and DB-based Extraction
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Figure 6.7 Efficiency of ranking factors in text- and database-based extracted requests

The quality of the keywords extracted only with the use of database statistics were 

not significant enough to make coherent evaluation of the efficiency aspect. This can be 

possibly because of the average TF*IDF score we use, as it to some extend corrupts the 

attribute-specific score. 
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Figure 6.8  Efficiency of ranking factors in database-based extracted requests
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6.4 Relevance
An efficient query should return only relevant results. That’s why our next aspect 

of  investigation  is  the  total  number  of  results  returned  from  top-k  queries.  The 

evaluation results are presented in Figure 6.8-6.12.
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Figure 6.9 Relevance in user’s requests

As  to  the  user’s requests,  the  least  amount  of  entities  is  returned  with 

IDF*avg(DAF) ranking factor, followed by IDF. So we can state that avg(DAF) filters 

the results returned by IDF. Furthermore, the both factors have a similar  behaviour in 

almost all types of requests.

DF  factor  returns  the  greatest  number  of  results,  this  can  be  crucial  when  a 

keyword query is very specific.  Concerning the extracted keyword queries, we notice 

the better performance of DF factor as compared to user’s  requests.   
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Text-Based Requests
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Figure 6.10 Relevance in text-based extracted requests

Text - and DB - Based Extraction
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Figure 6.11 Relevance in text- and database-based extracted requests

The  relatively  small  number  of  returned  entities  for  database-based  extracted 

requests,  as  shown  in  Figure  6.12,  is  due  to  the  rareness  of  the  keywords  in  the 

repository.  But as we already mentioned,  the possible reason is the average TF*IDF 

factor  is error-prone.
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DB - Based Requests

1

10

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Request Rank

R
es

ul
ts

 fr
om

 T
op

-k
 q

ue
rie

s

IDF
IDF*avg(DAF)
IDF*CAF
ARank
IDF*ARank
DF

Figure 6.12 Relevance in database-based extracted requests
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7 Conclusion

Keyword search interfaces,  which are popular by the human users due to their 

simplicity and usability, provide as well a convenient way for application developers to 

address the problem of incompleteness of the automatically extracted database requests. 

As a consequence, keyword-based requests, either manually created, or automatically 

extracted from unstructured documents, are typically underspecified. Keyword requests 

lack expressiveness, such that further disambiguation is required in order to precisely 

match them against the content of the database.

In  this  work  we investigated  how the  database  and document  context  can  be 

exploited in order to automatically extract representative keywords from a document 

and  retrieve  information  related  to  the  original  document  from  the  database.  We 

analysed the influence of the statistical information either provided by the document 

collection  or  the  target  database  on  the  quality  of  the  extracted  keywords  and 

corresponding search results. 

During  the  query  answering  process  we  performed  disambiguation  of  the 

keywords. Thereby the keyword request was translated into a ranked set of structured 

queries  each  having  well-defined  semantics.  We  compared  the  factors,  which  were 

important for the keyword request disambiguation for user- and automatically extracted 

requests. We employed statistical  metadata  about the database content  to create  and 

rank  such  structured  queries  and  analysed  how  alternative  query  ranking  factors 

increase effectiveness and efficiency of the search. We identified that the number of 

possible  interpretations  of a keyword request over the database grows exponentially 

with the number of keywords. We introduced an optimization algorithm, which enabled 

to reduce the number of interpretations,  needed to be evaluated by the database.  

We implemented our keyword extraction and disambiguation algorithms on the 

top of the Okkam entity repository. We evaluated our approach using 50 movie related 

Wikipedia documents and IMDB dataset imported in the Okkam entity repository as 

well as a set of 50 movie related user requests from a log of a Web search engine. The 

evaluation of the automatic keyword extraction techniques showed the importance of 

the context  information,  like e.g.  document  or collection  content.  Database statistics 

such as average keyword frequency across the database attributes was found to have 

little  influence on the effective keyword extraction.  We identified differences in the 
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ranking  factors,  which  have  positive  effects  on  disambiguation  of  user-  vs. 

automatically extracted keyword requests. Our experiments have shown, that attribute 

specific  selectivity  plays  an  important  role  in  answering  both,  user-  as  well  as 

automatically extracted requests.  Concerning the user requests, a combination of the 

selectivity  factor  with  a  keyword  independent  attribute  ranking  factor  avg(DAF) 

produced the best effectiveness, whereas the other keyword independent factor, CAF, 

played  a  more  important  role  in  answering  automatically  extracted  requests.  The 

ranking factors are described in Section 3.2.1 in detail.

This  work  opens  many  interesting  future  research  directions.  First  of  all, 

experiments performed in this work can be repeated on a more heterogeneous dataset, 

which can, for example, be contained in an entity repository like Okkam. Furthermore, 

on the one hand, our experiments have shown that keyword extraction based on the 

document context performs well, whereas on the other hand database statistics we used 

so  far  did  not  enable  satisfactory  search  results.  We can  further  look at  the  useful 

database statistics,  like attribute specific selectivity to improve these results.  Finally, 

attribute  selectivity  based  query  ranking,  which  was  shown  to  be  a  very  effective 

ranking  factor,  produced  precise  search  results  at  the  price  of  efficiency,  as  many 

queries with empty results become the highest ranks. In the future work we can look at 

the optimisation algorithms to reduce the number of executed structured queries and 

thus response time of the system.
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