Motivation:
Current Web search engines do not always provide the user’s expected answers. Users may want to find hubs, related to the pages they consider interesting, in order to get more information.

Current state:
Some good ranking algorithms, but which are not combining the global importance of a page with its importance as a hub. Few algorithms for computing related pages, almost no algorithm for computing related hubs.

Solution:
Find a new computation method to combine global page importance and hub quality measure in order to define a new ranking algorithm.

New search algorithm which finds high quality hubs connected to a given initial set of pages.

HubRank:
PageRank has demonstrated to be one of the most important rank algorithms developed so far in order to find good authorities. However it can be slightly modified to provide better results focusing on different aspects. Our idea here is to bias the PageRank algorithm in order to rank higher pages that are likely hubs.

The algorithm for computing hub scores is depicted in the following lines:

```
HubFinder:
Kleinberg defines an algorithm to extend around an initial set of pages together with the HITS algorithm ("Kleinberg Extension" hereafter). Some previous algorithms (e.g. HITS) apply this extension several times and then compute hub and authority scores for the resulting pages, keeping only top-ranked results.

HubFinder is intended to be an algorithm for finding hubs related to an initial base set of pages. We define related as accessible via the link structure of the Web (following either in-going or out-going links). When searching for related hubs, one would probably need to build a very large set of pages before having found enough representative results. HubFinder improves this by decreasing the amount of pages kept after each Kleinberg extension and thus increasing computation speed.

Our idea has the following skeleton as algorithm basis:
```

```
```

Conclusions and further work:
We present a new algorithm for computing global page importance focusing on hub quality as well. Users can now find faster the hubs related to their desired pages. HubFinder is twice as faster as other existing algorithms with similar features.

We are currently extending our tests to bigger input data sets (our current set has 3 million pages).