Optimizing near duplicate detection for peer-to-peer networks

Odysseas Papapetrou*
Stefan Siersdorfer
Sukriti Ramesh
Wolfgang Nejdl
Introduction

• Near duplicate on the **content level**:
 – near duplicates: resources with minor differences
 – videos with different advertisements, text with last-update-time
 – audio/video of different quality
 – different performance of the same song

• Why near duplicate detection for P2P?
 – Multimedia
 • finding alternative sources to parallelize the download
 • finding media of different resolutions/qualities
 • detecting copies of copyrighted multimedia
 • ignore minor differences, e.g., advertisements
 – Text
 • different versions of the same text
 • ignore insignificant changes, e.g., last-update-time
 • detect copyrighted text

• **Common property:**
 – *One can decide a priori on the minimum similarity for considering two files as near duplicates*
 – *Desired detection probability*
Locality Sensitive Hashing for NDD

- Use Locality Sensitive Hashing (LSH) for building an inverted index of files/resources
 - Resources R_1, R_2, R_3, \ldots
 - $R_i \approx R_j$ when $\text{sim}(R_i, R_j) > \text{minSim}$
 - $\text{LSH}(R_i) \rightarrow \text{Labels} \{ \text{label}_1, \text{label}_2, \ldots, \text{label}_l \}$
 - For example, $\text{LSH}(R_i) \rightarrow \{10010, 01011, 11011\}$
 - If $\text{sim}(R_i, R_j) > \text{minSim} \rightarrow R_i$ and R_j share a label w.h.p.,
 - If $\text{sim}(R_i, R_j) < \text{minSim} \rightarrow R_i$ and R_j do not share a label w.h.p.
Locality Sensitive Hashing over a DHT

- LSH-based inverted index
 - $\text{LSH}(R_i) \rightarrow$ Labels $\{\text{label}_1, \text{label}_2, \ldots, \text{label}_l\}$

 - Indexing: $\text{DHT}.\text{put}(\text{label}_x, R_i)$, for $1 \leq x \leq l$, for all resources
 - Querying for near duplicates of query R_i: $\text{DHT}.\text{get}(R_i, \text{label}_x)$, for $1 \leq x \leq l$ \Rightarrow union is potential near duplicates
 - Possible false positives
Locality Sensitive Hashing

- LSH-based inverted index
 - LSH(R_i) \rightarrow Labels \{$label_1, label_2, ..., label_l$\}

- Existing works: inverted index over DHT using the labels as keys \[LSHForest, Haghani09\]

- Crucial parameters
 - $l \uparrow$ \rightarrow false positives \uparrow, network cost \uparrow, detection probability \uparrow
 - $k \uparrow$ \rightarrow false positives \downarrow, network cost \downarrow, detection probability \downarrow

- Focus of our work:
 - find the optimal combination of l, k that provides the desired detection probability for the given network \rightarrow minimize network cost and make the algorithm more efficient and scalable

Optimizing Near Duplicate Detection for peer-to-peer networks
POND: Peer-to-peer Optimized Near duplicate Detection

• Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network

• All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT

• Periodic repetition to compensate for churn
POND: Peer-to-peer Optimized Near duplicate Detection

• Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network

• All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT

• Periodic repetition to compensate for churn
POND: Peer-to-peer Optimized Near duplicate Detection

- Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network

- All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT

- Periodic repetition to compensate for churn
Collecting network statistics

• Coordinator collects network statistics
 – Network size [Ganesh07]
 – Number of resources per peer
 – Probability distribution function (PDF) for all pairwise similarities in the corpus

• Sampling of a small number of neighbors
 – Pairwise similarities: peers transmit only the media representations (a few kbytes per peer)
 – PDF: represented as equi-width histogram
POND: Peer-to-peer Optimized Near duplicate Detection

• Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network

• All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT

• Periodic repetition to compensate for churn
Computing the optimal parameters (I)

• Coordinator computes optimal configuration
• Input parameters:
 – minimum similarity \(\text{minSim} \), detection probability \(\text{pr}_{\text{min}} \)
• Required statistics:
 – average #queries, number of peers \(N \)
• Cost (to minimize)
 – Maintenance: indexing the resources in the DHT
 – Query:
 • querying the DHT for the labels
 • cost for retrieving the false positives
 • cost for retrieving the true near duplicates
• Constraint
 – Detection probability \(\geq \text{pr}_{\text{min}} \)
Computing the optimal parameters (II)

Probabilities

- Reduce false positive probability: $\uparrow k$, $\downarrow l$
- Increase detection probability: $\downarrow k$, $\uparrow l$
- Optimal combination (proof in the paper)

$$k_0 = \frac{\log \left(1 - \left(1 - pr_{min}\right)^{1/l} \right)}{\log \left(0.5 - \frac{1}{2 \cdot \text{minSim}} \right) + \log (\text{minSim})}$$

Cost function convex \rightarrow convex optimization to identify the combination with minimum cost

Querying too expensive

Maintenance too expensive
POND: Peer-to-peer Optimized Near duplicate Detection

• Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network

• All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT

• Periodic repetition to compensate for churn
Propagating the optimal parameters

• Propagating the optimal parameters
 – Dissemination over DHT [El-Ansary03]
 – Cost: $O(N)$ messages, $O(\log(N))$ time

• Each peer
 – Computes the updated labels of all its resources
 – Indexes them in the DHT: $O(\log(N))$ per resource
POND: Peer-to-peer Optimized Near duplicate Detection

• Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network

• All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT

• Periodic repetition to compensate for churn
Query execution

- Finding all near duplicates of a resource R_q
 - Compute the labels of the resource, according to l and k
 - Lookup all labels at DHT \rightarrow potential near duplicates
 - For each potential near duplicate
 - Send a *compact representation* of R_q to the peer (a few Kbytes)
 - Retrieve the file only if it is a near duplicate
 - Large multimedia files are never transmitted over the network
Evaluation

• Datasets:
 – Reuters RCV1: 802 thousands documents, ~1 Gbyte
 – 22455 videos (TubeKit [Shah08]), 144 Gbytes
 – 22455 audios (82 Gbytes)
• Compare with non-optimized LSH
 – Network Cost
 – Retrieval effectiveness – Recall
Comparison with non-optimized alg.

- RCV1, $p_{\text{min}} = 0.8$, $\text{minSim} = 0.9$, 100000 peers
- Vary #queries per republishing period

- POND derives configuration with *minimal* cost
- Same probabilistic guarantees and recall with non-optimized LSH
Effect of desired detection probability:: Network cost

- Maintenance cost per resource/query cost per query
- Cost can be controlled using $p_{\text{r}}_{\text{min}}$
- Manageable for large collections, e.g., for indexing 100 videos with $p_{\text{r}}_{\text{min}}=0.9$, only ~2000 small messages required
- All messages are equi-sized and below 1Kbyte \rightarrow transfer volume proportional to #messages
Effect of desired detection probability:: Recall

- Probabilistic guarantees always satisfied
- Recall:cost tradeoff fine-tuned with $p_{r_{\text{min}}}$
- Recall insensitive to minSim: algorithm adapts the parameters to satisfy $p_{r_{\text{min}}}$
Conclusions

• Target: Determine the l and k values that minimize the network cost and satisfy the probabilistic guarantees

• Performance improvements easily reaches an order of magnitude

• Additional information in the paper
 – Compact representations for text, audio, video
 – Video linkage, with extensive evaluation

• Future work
 – Repeat analysis using different network configurations [LSHForest05, Haghani09]
 – Effect of similarity function
 – Possible extension to other application scenarios, such as tag recommendation and annotation sharing
Thank you

Questions?
Evaluation of video linkage

• Video linkage:
 – Experimental evaluation:
 • Split video to X parts (X={2,3,4})
 • $p_{r\text{min}}=0.9$, $\text{minSim}=0.9$
 • Use any one of the parts as a query, and try to detect the original file
 • Cost: At most 110 messages, for the largest videos
Effect of desired detection probability

- **Recall:**

- **Cost:**

Optimizing Near Duplicate Detection for peer-to-peer networks
Related work

Existing work on NDD

– P2P MACSIS [Yang03]
 • NDD for audio files
 • Based on gossiping

– Optimizing LSH for centralized systems [Dong08]
 • Focuses on computational cost

– LSH with p-stable distributions [Haghani09]

– LSH Forest [LSHForest05]
 • Repeating the analysis of POND for these network configurations
Further details (I)

• Extensions presented in the paper
 – Compact representations for text, audio, video
 • Independent of binary encoding and resolution
 • $|\text{representation}(R_i)|$ only a few Kbytes, even for videos
 • DHT.put(R_i. label$_x$, $\text{representation}(R_i)$)
 • Instead of exchanging the resources, peers exchange representations
Further details (II)

• Extensions presented in the paper
 – Video linkage
 • For practical reasons, users may break large videos e.g., titanic.avi → titanic-part1.avi and titanic-part2.avi
 • Use keyframes to *conceptually* split each video to smaller segments
 • Expected number of segments configurable
 • Each video segment is handled individually, w.r.t. indexing and query execution
 • Discovering one segment sufficient for full linkage
 • Experimental evaluation